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The role of social networks in learning and opinion formation has been demonstrated in a variety of scenarios such

as the dynamics of technology adoption [1], consumption behavior [2], organizational behavior [3] and financial

markets [4]. Emergence of network-wide social phenomena from local interactions between connected agents have

been studied using field data [5]–[7] as well as lab experiments [8], [9]. Interest in opinion dynamics over networks

is further amplified by the continuous growth in the amount of time that individuals spend on social media websites

and the consequent increase in the importance of networked phenomena in social and economic outcomes. As

quantitative data become more readily available, a research problem is to identify metrics that could characterize

emergent phenomena such as conformism or diversity in individuals’ preferences for consumer products or political

ideologies [10]. With these metrics available, a natural follow up research goal is the study of mechanisms that lead

to diversity or conformism and the role of network properties like neighborhood structures on these outcomes. All

of these questions motivate the development of theoretical models of opinion formation through local interactions

in different scenarios.

The canonical model of learning in networks considers a set of connected agents each endowed with private

information regarding a common underlying random state. Each agent uses his private information to form a

probability distribution on the state of the world and selects an action from an allowable set that is optimal with

respect to this belief. The definition of optimality with respect to the belief varies but a general model is to postulate

the existence of a utility function that depends on the selected action, the state of the world, and possibly on the

actions selected by other members of the network. If the state of the world were known, we would say that we have

complete information and select the action that maximizes the utility. However, information is incomplete because

only a belief on the state is available. Therefore, agents proceed to select actions that maximize the expectation of

their utilities with respect to their beliefs. In a networked setting agents further observe actions taken by agents in

their connectivity neighborhoods. These observations contain information on the state that a rational agent would

feel compelled to incorporate into his belief leading to the selection of a different optimal action. This phenomenon

of observations of neighboring actions affecting decision-making of agents is called information externality. In
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general, at a given point in time, any given agent has seen a history of neighboring actions that he combines with

his private information to update the probability distribution on the state of the world. This belief determines an

action that is optimal with respect to the expected utility. As time progresses, agents learn the state of the world

ω in the sense that they refine their knowledge – i.e., the mass of the belief becomes more concentrated – through

the observation of neighboring actions. The focus is often on the characterization of asymptotic properties of the

belief and the actions of agents as well as algorithmic considerations.

When utilities of agents depend not only on the unknown state of the world but also on the unknown actions of

other agents, we say that there are payoff externalities. In most social learning scenarios payoff externalities and

information externalities coexist in that the action chosen by agent i is determined by both an informational com-

ponent pertaining to agents’ beliefs about the underlying state of the world and a payoff externality corresponding

to their beliefs about the actions taken by all the other agents in the network. In stock markets, for instance, the

actions of each individual affect the utility of all the other agents and agents respond strategically to actions based

on their beliefs. At the same time these actions contain information about stocks’ intrinsic valuations that market

participants are intent on learning. By selecting certain actions agents are revealing, perhaps unwillingly, pieces of

private information about the true value of the stock [11], [12]. The focus is the study of asymptotic behavior of

agents’ actions and their beliefs given a fixed network that determines the flow of information; see Section II.

There exists an extensive literature on Bayesian learning over networks for scenarios without payoff externalities

[13]–[16]. One may think of this problem as a variant of distributed estimation since agents intend to compute

an estimate based on global information by aggregating local information and successively refining their estimates

using those of their neighbors. Linear and nonlinear estimation problems are well-studied in the signal processing

literature; see e.g., [17]. The main difference between distributed estimation problems and the ones considered here

is that in the former network nodes may exchange observations, estimates, and even some auxiliary variables [18]–

[26]. In the problems considered here, on the other hand, agents try to infer the state of the world by observing

actions of neighboring nodes. The former is a suitable model for algorithm and protocol design, but the latter

is a more appropriate model of social and economic interactions. Besides signal processing, models with purely

informational externalities have been studied in economics [14], [15], [27], [28], computer science [29], statistics

[30], and control theory [31]–[34].

Even though Bayesian learning stands as the normative behaviorial model for agents in social networks, it is

often computationally intractable even for networks with small number of agents. This is since a Bayesian update

requires an agent to infer not only about the information of his neighbors but also that of the neighbors of his

neighbors and so on. Because of such computational intractability little is known about Bayesian learning besides

the asymptotic behavior. However, under some structural assumptions on distribution of information [30] or the
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network structure [29], Bayesian learning is shown to be tractable in absence of payoff externalities. In this paper

we present a tractable algorithm for the case when agents also face payoff externalities, assuming that agents’ initial

private signals are normally distributed; see Section III. We use the algorithm to numerically study the effect of

the network structure on convergence time; see Section IV.

I. BAYESIAN LEARNING IN NETWORKS

The network learning models considered in this paper comprise of an unknown state of the world ω ∈ Ω and a

group of agents N = {1, . . . , N} whose interactions are characterized by a network G = (N , E). At subsequent

points in time t = 0, 1, 2, . . ., agents in the network observe private signals si,t that carry information about the

state of the world ω and decide on an action ai,t belonging to some common compact metric action space A that

they deem optimal with respect to a utility function of the form

ui
(
ω, ai,t, {aj,t}j∈N\i

)
. (1)

Besides his action ai,t, the utility of agent i depends on the state of the world ω and the actions {aj,t}j∈N\i of all

other agents in the network. This dependence tries to capture tradeoffs that arise in social and economic networks.

For example, the state of the world ω may represent the inherent value of a service, the private signals si,t quality

perceptions after use, and ai,t decisions on how much to use the service. The utility of a person derives from the

use of the service depending not only on the inherent quality ω but also on how much other people use the service.

Deciding optimal actions ai,t would be easy if all agents were able to coordinate their actions. All private signals

si,t could be combined to form a single probability distribution on the state of the world ω and that common

belief used to select ai,t. Agents could act together and combine their utilities into a social objective or they

could exhibit strategic behavior and select game equilibrium actions. Whether there is payoff externality or not,

global coordination is an implausible model of social and economic behavior. We therefore consider agents that act

independently of each other and couple their behavior through observation of the action history of agents in their

network neighborhood Ni.

To be more precise say that at time t = 0, there is a common initial belief among agents about the unknown

parameter ω. This common belief is represented by a probability distribution P . At time t = 0, each agent observes

his own private signal si,0 which he uses in conjunction with the prior belief P to choose and execute action ai,0.

Upon execution of ai,0 actions {aj,0}j∈Ni
of neighboring agents become known to node i. Knowing the actions

of its neighbors provides agent i with information about the neighboring private signals {sj,0}j∈Ni
, which in turn

refines his belief about the state of the world ω. This new knowledge prompts a re-evaluation of the optimal action

ai,1 in the subsequent time slot. In general, at stage t, agent i has acquired knowledge in the form of the history
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hi,t of past and present private signals si,τ for τ = 0, . . . , t and past actions of neighboring agents {aj,τ}j∈Ni
for

times τ = 1, . . . , t−1. This history is used to determine the action ai,t for the current slot. In going from stage t to

stage t+ 1, neighboring actions {aj,t}j∈Ni
become known and incorporated into the history of past observations.

We can thus formally define the history hi,t by the recursion

hi,t+1 =
(
hi,t, {aj,t}j∈Ni

, si,t+1

)
. (2)

The component of the game that determines action of agent i from observed history hi,t is his strategy σi,t. A

pure strategy is a function that maps any possible history to an action, σi,t : hi,t 7→ ai,t. The value of a strategy

function σi,t associated with the given observed history hi,t is the action of agent i, ai,t. Given his strategy

σi := {σi,u}u=0,...,∞, agent i knows exactly what action to take at any stage upon observing the history at that

stage. Hence, the (pure) strategies of all the agents across time σ := {σj,u}j∈N ,u=0,...,t, namely, the strategy profile

determines the path of play, that is, the sequence of histories each agent will observe. As a result, if agent i at time

t knows the information set at time t, i.e., ht = {h1,t, . . . , hN,t}, then he knows the continuation of the game from

time t onwards given knowledge of the strategy profile σ.

When agents have (common) prior P on the state of the world at time t = 0, the strategy profile σ induces a

belief Pσ(·) on the path of play. That is, Pσ(h) is the probability associated with reaching an information set h

when agents follow the actions prescribed by σ. Therefore, at time t, the strategy profile determines the prior belief

qi,t of agent i given hi,t, that is,

qi,t(·) = Pσ(·|hi,t). (3)

The prior belief qi,t puts a distribution on the set of possible information sets ht at time t given that agents played

according to σ0,...,t−1 and i observed hi,t. Furthermore, the strategies from time t onwards σt,...,∞ permit the trans-

formation of beliefs on the information set into a distribution over respective upcoming actions {aj,u}j∈N ,u=t,...,∞.

As a result, upon observing {aj,t}j∈Ni
and si,t, agent i updates his belief using Bayes’ rule,

qi,t+1(·) = Pσ(·
∣∣hi,t+1) = Pσ(·

∣∣hi,t, si,t+1, {aj,t}j∈Ni
) = qi,t(·

∣∣ si,t+1, {aj,t}j∈Ni
). (4)

Since the belief is a probability distribution over the set of possible actions in the future, agent i can calculate

expected payoffs from choosing an action. A rational behavior for agent i is to select the action ai,t that maximizes

the expected utility given his belief qi,t,

ai,t ∈ argmax
αi∈A

Eσ
[
ui
(
ω, αi, {σj,t(hj,t)}j∈N\i

) ∣∣hi,t] := argmax
αi∈A

∫
h
ui
(
ω, αi, {σj,t(hj,t)}j∈N\i

)
qi,t(h) (5)

where we have defined conditional expectation operator Eσ[·
∣∣hi,t] with respect to the conditional distribution
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Pσ(·
∣∣hi,t). The rational action ai,t in (5) is optimal given strategy profile σ; as a result, ai,t is a function of the

strategy profile σ.

So far we have not imposed any constraints on the strategy profile σ. According to the definition of rational

behavior in (5), all agents should maximize the expected value of self utility function. With this in mind we define

the Bayesian Nash equilibrium (henceforth, BNE) to be the strategy profile of a rational agent. A BNE strategy σ∗

is a best response strategy such that no agent can expect to increase his utility by unilaterally deviating from his

strategy σ∗i,t given that the rest of the agents play equilibrium strategies {σ∗j,t}j∈N\i; that is, σ∗ is BNE if for each

i ∈ N and t = 0, 1, 2, . . ., the strategy σ∗i,t maximizes the expected payoff:

σ∗i,t(hi,t) ∈ argmax
αi∈A

Eσ∗
[
ui(ω, αi, {σ∗j,t(hj,t)}j∈N\i)

∣∣hi,t] . (6)

We emphasize that (6) needs to be satisfied for all possible histories hi,t and not just for the history realized

in a particular game realization. This is necessary because agent i does not know the history observed by agent

j but rather has a probability distribution on histories. Thus, to evaluate the expectation in (5) agent i needs a

representation of the equilibrium strategy for all possible histories hj,t.

In this paper we restrict our attention to the equilibrium notion where agents choose myopically optimal actions

as in (5). It is also possible to define BNE for non-myopic agents that discount future payoffs. Agents exhibiting

non-myopic behavior might experiment to obtain valuable information to be used in the future. In rest of the paper

we consider myopic agents playing with respect to BNE strategy σ∗i . To simplify future notation, we define the

expectation operator

Ei,t
[
·
]

:= Eσ∗
[
· | hi,t

]
, (7)

to represent expectations with respect to the local history hi,t when agents play according to the equilibrium strategy

σ∗.

BNE is an extension of Nash equilibrium to games with incomplete information. In this solution concept we

assume that agents interpret actions of their neighbors knowing that they play according to the BNE strategy, i.e.

BNE is common knowledge. Note that while defining rational behavior in (5), we have not specified how agent i

models actions of other agents. In order to calculate his expected utility in (5), agent i needs to have a model of

strategies of other agents. Common knowledge of BNE strategies and rationality is a particular model of agents’

behavior in which agent i believes, correctly so, that agent j is rational. In other words, agent i’s model of behavior

of agent j ∈ N \ {i} is that j also maximizes expected payoff as in (6) and further that agent i can correctly

guess j’s actions if he had access to j’s history hj,t. In a networked setting, agents also require knowledge of the

network in order to infer about information of other agents. Hence, we also assume network structure is common
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knowledge. Notice that this equilibrium notion couples beliefs and strategies in a consistent way in the sense that

strategies induce beliefs and the beliefs determine optimal strategy. This rational model provides a benchmark for

comparison with other behavioral models.

A. Notions of Consensus

An important research question when studying social learning models is whether agents reach consensus, and if

they do, whether the outcome is efficient according to some criterion. Several different notions of consensus have

been studied in the literature. Agents are said to reach consensus in their actions if they all eventually take the

same action, or more formally, if the distance between ai,t and aj,t goes to zero as time goes to infinity where the

distance is defined using the metric on the action space A. If agents’ utility functions are the same, then reaching

consensus in the actions implies that agents obtain the same utility; however, the converse is not necessarily true. A

different characterization of consensus is in terms of agents’ beliefs. Agents i and j are said to reach consensus in

their beliefs, if the distance (in total variation) between probability measures qi,t(·) and qj,t(·) goes to zero as t goes

to infinity. If this is true for any two pair of agents, we say that all agents reach consensus. The consensus belief

however might be inaccurate in the sense of not corresponding correctly to the agents’ observations. Another notion

of convergence considers expected payoffs. We say that agents are expected to perform equally well asymptotically

if

lim
t→∞

E
[
ui(ω, ai,t, {ak,t}k∈N\i)

]
= lim

t→∞
E
[
uj(ω, aj,t, {ak,t}k∈N\j)

]
, (8)

where the expectation is over all possible realizations of the state of the world ω. The result in (8) establishes a

form of consensus that is attained in the limit. It is possible that for individual realizations of the parameter ω,

the expected payoffs of different agents are different; however, if we consider an average across realizations of ω,

the payoffs asymptotically coincide. We can interpret this result as stating that ex ante all agents are expected to

obtain the same payoff.

Each of the notions of agreement discussed above might be relevant in certain applications. Moreover, they do

not necessarily coincide. Agents might reach consensus in their actions without having the same beliefs if agents’

actions do not completely reflect the beliefs held by them. On the other hand, agents might reach consensus in

their beliefs (and even learn all the information) and yet take disparate actions.

In the following sections we consider learning in a class of games in which actions are on the real line and the

utility function is quadratic in agents’ actions and the state of the world. In Section II we survey a recent result

that shows convergence in expected payoffs. This result is essential in proving that agents’ reach consensus in their

actions in the limit. In Section III we derive tractable recursions for rational learning given that agents’ private

signals are normally distributed.
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II. LEARNING WITH PAYOFF EXTERNALITIES

Presence of payoff externalities adds another layer of complexity to the learning process compared to models

with purely informational externalities, since it prohibits agents from interpreting the actions of their neighbors

as solely revealing information about the true state of the world. Instead, they have to keep track of motives of

other agents and at the same time incorporate the new information effectively. The interested readers can refer

to the callout for an illustration of the rational learning process with both payoff and informational externalities.

An example of learning with only informational externalities is given in [16]. In this section, we introduce games

with utility functions that are quadratic both in the state of the world and agents’ actions. We then exemplify this

quadratic form in the context of financial markets. Finally, we provide asymptotic convergence results for learning

in quadratic games over networks.

A. Quadratic Games

At any time t, selection of actions {ai := ai,t ∈ R}i∈N when the state of the world is ω ∈ R results in agent i

receiving a payoff,

ui(ω, ai, {aj}j∈N\i) = −1

2

∑
j∈N

a2j +
∑

j∈N\{i}

βijaiaj + δaiω + cω2, (9)

where βij , δ and c are real valued constants. The constant βij measures the effect of j’s action on i’s utility. For

notational convenience we let βii = 0 for all i ∈ N .

Since ui is a strictly concave function of ai (i.e., ∂2ui/∂a2i < 0), the myopically optimal action can be computed

explicitly by taking the derivative with respect to ai, equating the result to zero, and solving for ai. As a result,

the rational action, defined in (5), for agent i in response to any strategy {σj,t}j∈N\i is a linear function of the

strategies of other agents and the underlying parameter:

ai,t =
∑

j∈N\{i}

βijEi,t[σj,t(hj,t)] + δ Ei,t[ω]. (10)

According to the equilibrium definition (6) in Section I, at each state agents play a myopic best response given

the observed history against other agents’ actions, which in turn are myopic best responses. Consequently, for the

quadratic utility function an equilibrium strategy profile {σ∗i,t}i∈N solves the following set of equations

σ∗i,t(hi,t) =
∑

j∈N\{i}

βijEi,t[σ∗j,t(hj,t)] + δEi,t[ω], (11)

for all i ∈ N .
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B. Coordination Games

Keynes in his General Theory of economics argues that if a person is asked to guess the beauty contest winner,

he should evaluate each contestant with respect to what he thinks other people’s criteria of beauty is. Similarly,

an investment in the stocks of a company entails a player not only to consider his own estimate of how well the

company is doing but also what everyone else thinks about the company’s status [11]. Let ω ∈ R be the true stock

value of a company. In this context, action ai,t represents player i’s valuation of the asset; i.e., it is the price that

agent i is willing to pay per stock share at time t. The payoff function for agent i is given by

ui(ω, ai, {aj}j∈N\i) = −1− λ
2

(ai − ω)2 − λ

2(N − 1)

∑
j∈N\{i}

(ai − aj)2, (12)

where λ ∈ (0, 1). This payoff function is reminiscent of that of a coordination game (or potential game) [35], [36]

with the only difference being the addition of a term corresponding to an estimation problem. The first term of the

payoff function measures the desire of the player to estimate the true value of the stock as the quadratic distance

between i’s action and ω. The second term is the coordination (or the beauty contest) term measuring the payoff

associated with being close to valuations of other members of the society. It represents how the actions of others

affect the payoff of agent i. The constant λ gauges the relative importance of coordination and estimation.

Using (6), the BNE strategy σ∗ in this quadratic game solves the following set of equations:

σ∗i,t(hi,t) = (1− λ)Ei,t [ω] +
λ

n− 1

∑
j∈N\{i}

Ei,t
[
σ∗j,t(hj,t)

]
, i ∈ N and t ∈ N. (13)

Since the payoff (12) is of the form in (9), the equilibrium equations in (10) are linear in strategies of other agents

as in (11).

The same payoff function can also be motivated by looking at coordination among a network of mobile agents

starting with a certain formation trying to move toward a finish line on a straight path [12], [37]. Each agent collects

an initial noisy measurement of the true heading angle ω, that is, the angle that achieves the shortest path toward

the finish line. In this example the actions of agents represent their choice of heading direction or movement angle.

We assume the agents move with constant and equal velocity. The first term in (12) represents agents’ goal to

estimate the correct heading angle. The desire of agent i to maintain the initial formation is captured by the second

term in (12).

C. Asymptotic Properties of Learning in Quadratic Games

In this section we present results from [12], [38] that focus on symmetric, supermodular and diagonally dominant

games.
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The game defined by the utility function in (9) is symmetric when the pairwise influences βij are equal for

any pair; that is, βij = β for constant β ∈ R for all i ∈ N and j ∈ N \ {i}. A game is supermodular when

agents’ strategies are complementary to each other. Strategic complementarity between agents i and j means that

the marginal utility of agent i’s action increases with an increase in j’s action. For a twice differentiable utility

function, this is equivalent to requiring that ∂2ui(·)/∂ai∂aj > 0 for any two agents i and j. For our quadratic utility

function in (9), the actions of i and j are strategic complements when βij ≥ 0 for all i ∈ N and j ∈ N \ i. We

further restrict our attention to games in which the Hessian matrices of the utility function are strictly diagonally

dominant. For the utility function in (9), this is equivalent to requiring that there exists ρ < 1 such that

∑
j∈N\{i}

βij ≤ ρ for all i ∈ N . (14)

The interpretation of (14) is that an agent’s utility is more sensitive to changes in his own actions than to changes

in the actions of other agents. Notice that the payoff function (12) of the coordination problem satisfies all of these

properties.

According to the learning framework introduced in Section I, agents take actions specified by the equilibrium

strategy, observe neighboring actions, update their beliefs according to the Bayes’ rule, and then start the next stage

as a new game with beliefs different from the previous stage. This means that the equilibrium of the new game is

not necessarily the same as the equilibrium of the previous stage. However, since agents accumulate information

about the unknown state over time, it is possible to show that under the equilibrium behavior in (6), agents’ expected

utilities converge for the utility function in (9) [12]. By the same token agents’ equilibrium actions a∗i,t := σ∗i,t(hi,t)

defined in (11) converge in the limit:

a∗i,t → a∗i,∞ a.s. for all i ∈ N . (15)

Existence of limit actions implies that the agents can learn their neighbors’ limit actions. Since i observes actions

of j ∈ Ni, agent j’s action at time t − 1 is in the information set of agent i at time t; i.e., a∗j,t−1 ∈ hi,t. This

implies that a∗j,t−1 is measurable with respect to the information of i at time t. Therefore, since a∗j,t → a∗j,∞ with

probability one i’s information is an increasing set that converges as t goes to infinity, the limit action a∗j,∞ is

measurable with respect to i’s information at infinity. In other words, agent i is able to identify the limit action of

a neighboring agent j.

The fact that agents can identify the limit actions of their neighbors leads to a number of interesting conclusions

by making use of the so-called imitation principle [14], [15]. The imitation principle states that the expected payoff
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of agent i with respect to his history cannot increase if he adopts an action of a neighboring agent

Ei,∞
[
ui(ω, a

∗
i,∞, {a∗k,∞}k∈N\i)

]
≥ Ei,∞

[
u(ω, a∗j,∞, {a∗k,∞}k∈N\i)

]
, j ∈ Ni. (16)

The inequality in (16) is due to the definition of a∗i,t as the maximizing action in (6). Notice that (16) is only true

for neighboring nodes because i only observes (and hence can identify) the actions of his neighbors. Actions of

other agents, on the other hand, are not observed by i and may not be measurable with respect to qi,∞.

By applying the imitation principle and making use of the assumption on the strategic complementarity of the

actions between agents i and j ∈ Ni, we can show that neighboring agents are expected to receive the same payoff

whether i plays his own limit action a∗i,∞ or any of his neighbors’ limit actions a∗j,∞ [12]; that is,

E[Ei,∞
[
ui(ω, a

∗
i,∞, {a∗k,∞}k∈N\i)

]
] = E[Ei,∞

[
ui(ω, a

∗
j,∞, {a∗k,∞}k∈N\i)

]
], for all j ∈ Ni. (17)

The intuitive argument behind (17) is as follows. By the symmetry property of the utility function strategic

complementarity implies that unilateral deviations by i and j to each other’s actions are at least as good as playing

their own limit actions in expectation. However, by the imitation principle in (16), this behavior can never yield

strictly higher payoffs. Hence, it must be the case that deviations to neighbors’ limit actions result in the expected

performance of agents. Note that this is true only for neighboring agents.

By the imitation principle in (16), the left hand side of (17) is no larger than the right hand side for all ω. Hence,

it must be case that the equality holds almost surely when we remove the outer expectation in (17):

Ei,∞
[
ui(ω, a

∗
i,∞, {a∗k,∞}k∈N\i)

]
= Ei,∞

[
ui(ω, a

∗
j,∞, {a∗k,∞}k∈N\i)

]
, for all j ∈ Ni. (18)

According to (18), agent i expects his limit action to result in a payoff no worse than if he were to play the limit

action of one of his neighbors; i.e, from the perspective of agent i agent j’s limit action is just as good as self

limit action.

An immediate corollary of (18) is that for a connected network agents reach consensus in their actions. The result

is proved by the following argument. Given (18) the limit action of agent j is a maximizer of the expected utility of

agent i; i.e., a∗j,∞ = argmaxαi∈A Ei,∞
[
u(ω, αi, {a∗k,∞}k∈N\i)

]
. By strict concavity of (9) the myopically optimal

action in (5) is unique. Hence, it must be the case that a∗i,∞ = a∗j,∞ for all i ∈ N and j ∈ Ni with probability one.

Given that the network is connected this implies that a∗i,∞ = a∗j,∞ for any pair of agents. This conformity result

proved in [12] extends some of the results in [15] to models with payoff externalities.
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III. GAUSSIAN QUADRATIC NETWORK GAMES

In this section we restrict our attention to games with quadratic utility functions as in (9) and private signals that

are normally distributed, and show that the equilibrium strategies can be computed explicitly. The results of this

section are presented in more formally and in more detail in [37]. Assume that at time t = 0, agent i receives a

private noisy signal si ∈ R about the unknown parameter:

si = ω + εi, (19)

where εi is normal with mean zero and variance Ci. The grouping of all private signals is denoted by the vector of

private signals s := [s1, . . . , sn]T ∈ RN×1. Further, agents’ common prior for ω is an (improper) uniform measure

over R. Hence, the posterior at time t = 0, P (ω, sT
∣∣ si) is normal.

To see how equilibrium responses can be computed explicitly, assume for the sake of argument that at given

time t it is possible to write the minimum mean squared error (MMSE) estimates of the state of the world θ and

the private signals s as linear combinations of the private signals themselves; i.e., at time t there are vectors ki,t

and matrices Li,t for which we can write

Ei,t [ω] = kTi,ts, Ei,t [s] = Li,ts, for all i ∈ V. (20)

Notice that (20) does not imply that MMSE estimates Ei,t [ω] and Ei,t [s] are computed as linear combinations of

the private signals s. This is not possible because agent i does not know the values of all private signals—if this

were the case, there would be no game to be played and the expression Ei,t [s] = Li,ts would be pointless. Our

assumption is that whatever may be the computations that agents perform, they are equivalent to computing the

linear combinations in (20).

The validity of (20)—which we assume for the moment without a proof—is instrumental in simplifying the

computation of best responses and the associated fixed points that define the equilibrium actions. For that matter

we solve (6) by postulating that the best response action can be written as a linear combination a∗i,t = vTi,tEi,t[s] of

the private signals’ MMSE estimates with weights given by some vector vi,t to be determined. Given this candidate

solution, we can rewrite the best response fixed point condition in (6) as

vTi,tEi,t[s] =
∑

j∈V \{i}

βijEi,t
[
vTj,tEj,t[s]

]
+ δ Ei,t[ω]. (21)

Since we are assuming that (20) holds and that in particular the private signal MMSE estimate is Ei,t [s] = Li,ts,

we can rewrite the double expectations inside the summation in (21) as

Ei,t
[
vTj,tEj,t[s]

]
= Ei,t

[
vTj,tLj,ts

]
. (22)
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Substituting the expression in (22) into (21), and further noting that as per (20) the MMSE estimate of the world

state is Ei,t [ω] = kTi,ts and the estimate of the private signals is Ei,t [s] = LTi,ts, we can simplify the equilibrium

condition to

vTi,tLi,ts =
∑

j∈V \{i}

βijv
T
j,tLj,tLi,ts + δ kTi,ts, (23)

which as (6), or (21) for that matter, we require for all agents i ∈ V . In order to solve this systems of equations

we observe that it is underdetermined. Each vector vi,t contains N elements and since there are N of this vectors

there are a total of N2 unknowns. However, there is one equation like (21) for each agent leading to a total of

N equations. We can take advantage of this indeterminacy and proceed to equate the terms that multiply each

individual signal sj on each side of (21). This results in a set of N equations of the form

LTi,tvi,t =
∑

j∈V \{i}

βijL
T
i,tL

T
j,tvj,t + δ ki,t, (24)

associated with each agent i. Since we have a total of N agents, there are N2 equations that we can use to determine

the N2 values of the vectors vi,t for all agents i. Observe that the systems of linear equations defined by (24)

does not depend on the realization of the private signals and that as a consequence neither do the coefficients vi,t.

Irrespective of the realization of the private signals s, the strategy of agent i at time t is the linear combination

a∗i,t = vTi,tEi,t[s] with weights vi,t. An important consequence of this observation is that the coefficient vi,t can be

determined locally by each agent as long as he has access to the (known) network parameters without requiring

knowledge of the (unknown) private signal values. The actions realized, on the other hand, depend on the observed

history through the MMSE estimate Ei,t[s] and hence on the realization of the private signals. As well they should.

For future reference stack all weighting coefficients vi,t into the aggregate vector vt := [vT1,t, . . . ,v
T
N,t]

T and all

coefficients ki,t into the aggregate kt := [kT1,t, . . . ,k
T
N,t]

T . Further define the matrix Lt ∈ RN2×N2

as the matrix

with jth N ×N diagonal block equal to LTj,t and off diagonal blocks −βijLTi,tLTj,t

Lt :=



LT1,t −β12LT1,tLT2,t . . . −β1NLT1,tLTN,t
−β21LT2,tLT1,t LT2,t . . . −β2NLT2,tLTN,t

... · · · . . .
...

−βN−11LTN−1,tLT1,t · · · LTN−1,t −βN−1NLTN−1,tLTN,t
−βN1L

T
N,tL

T
1,t · · · −βNN−1LTN,tLTN−1,t LTN,t


. (25)

With these definitions the system of linear equations in (24) can be written in the more compact form

Ltvt = δkt. (26)
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We have argued that if we can write MMSE estimates as linear combinations of private signals as per (20), the

determination of the equilibrium strategy reduces to the solution of the system of linear equations in (26). However,

is it true that we can write the estimates Ei,t[ω] and Ei,t[s] as in (20)? And if this is true, what are the values of

the vectors ki,t and the matrices Li,t which are needed to formulate (26)? To answer these questions we offer an

inductive argument in the form of a recursive equation to update the values of the coefficients ki,t and Li,t.

An important consequence of the assumption in (20) which we have not emphasized is that equilibrium actions

can be also written as a linear combination of the private signals. Indeed, since we can find vectors vTi,t—as the

solution of the system of equations in (26)—such that equilibrium actions are a∗i,t = vTi,tEi,t[s], and since we assume

Ei,t[s] = Li,ts, we can write the action of agent i at time t as

a∗i,t = vTi,tLi,ts, for all i ∈ N . (27)

Do note that as in the case of (20), we do not imply that agent i calculates its equilibrium action using (27). This

is impossible because some private signals are unknown and the correct interpretation of (27) is that whatever

computations agents perform to determine their equilibrium actions, they are equivalent to performing the linear

combinations in (27).

The expression in (27) simplifies the understudying of the information revealed by the action of a user. From

the perspective of agent i, observing the action aj,t of agent j is equivalent to observing the linear combination of

private signals. Observing the composition of neighboring actions a∗Ni,t
:=
[
aj1,t, . . . , ajd(i),t

]T , where we use d(i)

to denote the cardinality of the set Ni, is therefore equivalent to observing the vector linear combination

a∗Ni,t = HT
i,ts :=

[
vTj1,tLj1,t; . . . ;v

T
jd(i),tLjd(i),t

]
s, (28)

where we have defined the observation matrix HT
i,t :=

[
vTj1,tLj1,t; . . . ;v

T
jd(i),t

Ljd(i),t
]
∈ Rd(i)×N . If (27) is true for

all times t, which implies that the same is true of (28), it follows that from the perspective of agent i estimation of

the private signals s and of the underlying state of the world ω is a simple sequential linear (L)-MMSE estimation

problem. Indeed, at time t = 1, the prior distribution P (ω, sT ) is Gaussian, and i observes neighboring actions

a∗Ni,0
given by the linear combination HT

i,0s. Incorporating the information contained in this linear observation

changes the posterior distribution to P (ω, sT
∣∣hi,1) but this latter distribution is also normal. At general time t+ 1,

agent i has a normal prior P (ω, sT
∣∣hi,t) and observation of neighboring actions a∗Ni,t

= HT
i,ts results in a normal

posterior P (ω, sT
∣∣hi,t+1). Thus, to track the belief P (ω, sT

∣∣hi,t) it suffices to keep bearings on the corresponding

means and variances which we can do using a LMMSE filter.

Specifically, consider agent i at time t and define the private signal covariance matrix M i
ss(t) and the state-private
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signal cross covariance M i
ωs(t), respectively, defined by the expressions

M i
ss(t) := Ei,t

[(
s− Ei,t[s]

)(
s− Ei,t[s]

)T ]
, (29)

M i
ωs(t) := Ei,t

[(
ω − Ei,t[ω]

)(
s− Ei,t[s]

)T ]
. (30)

The LMMSE estimation of s from observation a∗Ni,t
= HT

i,ts as given by (28) requires definition of the LMMSE

gain Ki
s(t) given by the product of the cross covariance between the signal s and the observation a∗Ni,t

times the

inverse of the covariance matrix of the observation a∗Ni,t
. Since the covariance of s is M i

ss(t) and the observation

model is a∗Ni,t
= HT

i,ts, the LMMSE gain is given explicitly by

Ki
s(t) = M i

ss(t)Hi,t

(
HT
i,tM

i
ss(t)Hi,t

)−1
. (31)

Using the value of the LMMSE gain Ki
s(t) in (31), the posterior mean Ei,t+1[s] and posterior covariance matrix

M i
ss(t+ 1) after observing the neighboring actions a∗Ni,t

follow from the recursive expressions

Ei,t+1[s] = Ei,t[s] +Ki
s(t)
(
a∗Ni,t − Ei,t[a∗Ni,t]

)
, (32)

M i
ss(t+ 1) = M i

ss(t)−Ki
s(t)H

T
i,tM

i
ss(t) (33)

where the executed value of the observations follows from (28) as Ei,t[a∗Ni,t
] = HT

i,tEi,t[s]. Likewise, for the

estimation of the state ω from observations a∗Ni,t
we compute the LMMSE gain

Ki
ω(t) = M i

ωs(t)Hi,t

(
HT
i,tM

i
ss(t)Hi,t

)−1
, (34)

given by the product of the cross covariance M i
ωs(t)Hi,t between signal ω and observation a∗Ni,t

= HT
i,ts times the

inverse of the observation’s covariance HT
i,tM

i
ss(t)Hi,t. We then have that the state’s posterior mean Ei,t+1[ω] and

posterior cross covariance M i
ωs(t+ 1) after observing the neighboring actions a∗Ni,t

are given by the recursions

Ei,t+1[ω] = Ei,t[ω] +Ki
ω(t)

(
a∗Ni,t − Ei,t

[
a∗Ni,t

] )
, (35)

M i
ωs(t+ 1) = M i

ωs(t)−Ki
ω(t)HT

i,tM
i
ss(t). (36)

We emphasize that it is possible to write a similar variance update for the world state variance M i
ωω(t) := Ei,t

[
(ω−

Ei,t[ω])2
]

but this is inconsequential to our argument. Further note that the somewhat unfamiliar form of the LMMSE

gains Ki
s(t) in (31) and Ki

ω(t) in (34) are due to the fact that the observation model a∗Ni,t
= HT

i,ts in (28) is noiseless.

We have therefore concluded that if we have linear actions as per (27), which is true as long as (20) is true, the

propagation of beliefs P (ω, sT
∣∣hi,t) reduces to the recursive propagation of means and covariances in (31)–(36).

From the expressions in (32) and (35) we can see that it is possible to write the state and private signal expectations
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at time t+ 1 as the linear combinations Ei,t+1 [ω] = kTi,t+1s and Ei,t+1 [s] = Li,t+1s akin to those shown in (20).

For the private signal MMSE, substitute Ei,t [s] = Li,ts, a∗Ni,t
= HT

i,ts, and Ei,t[a∗Ni,t
] = HT

i,tEi,t[s] = HT
i,tLi,ts

into (32) to conclude that if it is possible to write (20) at time t, we can also write it at time t+ 1. Perhaps more

importantly, these substitutions also yield a recursive formula that allows updating the matrices Li,t as

Li,t+1 = Li,t +Ki
s(t)
(
HT
i,t −HT

i,tLi,t

)
. (37)

The same argument can be made for Ei,t[ω] to conclude that if Ei,t[ω] = kTi,ts at time t, it is also true at time t+ 1

with the linear combination coefficients adhering to the recursion

kTi,t+1 = kTi,t +Ki
ω(t)

(
HT
i,t −HT

i,tLi,t

)
. (38)

To complete the inductive argument we need to show that (20) is true at time t = 0, but this is obviously true

because Ei,0 [ω] = si and Ei,0 [sj ] = si for all agents.

The induction loop we just completed is sufficiently long so as to warrant retracing. We begin by the assumption

that at time t we can write MMSE estimates of the state of the world ω and the private signals s as linear

combinations of the private signals themselves as per (20). From this assumption it follows that equilibrium actions

can be written as the linear combinations of private signals in (27). From here it follows that beliefs are propagated

as per the LMMSE filter summarized in (31)–(36). A simple set of substitutions allows us to conclude that (20) is

true at time t+ 1 with the vector ki,t+1 propagated as per (38) and the matrix Li,t+1 propagated as in (38).

The expressions in (20) and (27) are neither used to propagate beliefs nor to compute equilibrium actions. The

actual operations carried by each agent are summarized in Figs. 1 and 2 and described in the following section.

A. Quadratic Network Game Filter

In order to compute and play BNE strategies each node runs a quadratic network game (QNG) filter. This filter

entails a full network simulation in which agent i maintains beliefs on the state of the world and the private signals

of all other agents. These joint beliefs allow agent i to form an implicit belief on all other actions a∗j,t for all j ∈ V

which he uses to find his equilibrium action a∗i,t.

The QNG filter at node i is an implementation of the LMMSE filters defined by (32) and (35) followed by the

play a∗i,t = vTi,tEi,t[s]. A block diagram for this filter is shown in Fig. 1. At time t, the input to the filter is the

observed actions a∗Ni,t
of agent i’s neighbors. The prediction Ei,t[a

∗
Ni,t

] = HT
i,tEi,t[s] of this vector is subtracted

from the observed value and the result is fed into two parallel blocks respectively tasked with updating the belief

Ei,t[ω] on the state of the world ω and the belief Ei,t[s] on the private signals s of other agents. To update the

belief on ω we implement (35) by multiplying the innovation a∗Ni,t
− Ei,t[a

∗
Ni,t

] by the gain Ki
ω(t) and add the
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a∗Ni,t

∑
Ki

s(t)
∑ Ei,t[s]

vTi,t a∗i,t

−HT
i,t−Ei,t[a∗Ni,t

]

M i
ss(t) {kj,t}j∈N

{Lj,t}j∈N

HT
i,t

s

{vj,t}j∈Ni

{Lj,t}j∈Ni

Ki
ω(t)

∑ Ei,t[ω]

Fig. 1. Block diagram of the Quadratic Network Game (QNG) filter at agent i. The QNG filter contains a mechanism for belief propagation
and a mechanism to calculate equilibrium actions. Inside the dashed box, the belief propagation feedback loops that compute the estimates
of s and ω as linear combinations of private signals’ estimates of previous time are summarized. The observation prediction is subtracted
from the observation to form the prediction error. Afterwords, the belief propagation for s and ω follow the same steps with different gains.
The prediction error is multiplied by the corresponding gain matrix, and added to the previous mean estimate to form the corrected estimate
[cf. (32) and (35)]. Multiplying the corrected signal estimate with the action coefficient gives the equilibrium action. The gain coefficients
are provided by the LMMSE block in Fig. 2. The observation matrix and action coefficient are fed from the game block in Fig. 2. While
these coefficients can be calculated by each agent, the mean estimates Ei,t[s] and equilibrium action a∗

i,t can only be calculated by agent i.

result to the previous state estimate Ei,t[ω]. To update the belief on the private signals s we multiply the innovation

by the LMMSE gain Ki
s(t). The result of this amplification is added to the previous private signal belief Ei,t[s] as

dictated by (32). In order to determine the equilibrium play we multiply the private signal estimate Ei,t[s] by the

vector vTi,t obtained by solving the system of linear equations in (26).

Observe that in the QNG filter, we do not use the fact that estimates Ei,t [ω] and Ei,t[s] as well as actions a∗i,t

can be written as linear combinations of the private signals [cf. (20) and (27)]. While the expressions in (20) and

(27) are certainly correct, they cannot be used for implementation, because s is partially unknown to agent i. The

role of (20) and (27) is to allow derivation of recursions that we use to keep track of the gains used in the QNG

filter. These recursions can be divided into a group of LMMSE updates and a group of game updates as we show

in Fig. 2.

As it follows from (31), (33), (34), and (36), the update of LMMSE coefficients is identical to the gain and

covariance updates of a conventional sequential LMMSE. The only peculiarity is that the observation matrix Hj,t

is fed from the game update block and is partially determined by the LMMSE gains and covariances of previous

iterations. Nevertherless, this peculiarity is more associated with the game block than with the LMMSE block. The

game block uses (37) and (38) to keep track of the matrices Lj,t and the vectors kj,t. The matrices Lj,t are used

as building blocks of the matrix Lt and the vectors kj,t are stacked in the vector kt and used to formulate the

systems of equations in (26). Solving this system of equations yields the coefficients vj,t which in turn determine

the observation matrix Hj,t as per (28). As we mentioned before, the game block feeds the matrices Hj,t to the
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Variable

Lj,t

kj,t

vj,t

Hj,t

Game coefficients

Update

Lj,t+1 = Lj,t +Kj
s (t)

(
HT

j,t −HT
j,tLj,t

)
(37)

kT
j,t+1 = kT

j,t +Kj
ω(t)

(
HT

j,t −HT
j,tLj,t

)
(38)

Ltvt = δkt (26)

Hj,t :=
[
vT
k1,t

Lk1,t; . . . ;v
T
kd(j),t

Lkd(j),t
]T

(28)

Variable

Kj
s (t)

Kj
ω(t)

Mj
ss(t)

Mj
ωs(t)

LMMSE coefficients

Update

Kj
s (t) =Mj

ss(t)Hj,t

(
HT

j,tM
j
ss(t)Hj,t

)−1
(31)

Kj
ω(t) =Mj

ωs(t)Hj,t

(
HT

j,tM
j
ss(t)Hj,t

)−1
(34)

Mj
ss(t+ 1) =Mj

ss(t)−Kj
s (t)H

T
j,tM

j
ss(t) (33)

Mj
ωs(t+ 1) = Mj

ωs(t)−Kj
ω(t)H

T
j,tM

j
ss(t) (36)

Hj,t

Kj
s (t)

Kj
ω(t)

vi,t Hi,t

to filterto filter

Ki
s(t) Ki

ω(t)

to filterto filter

Fig. 2. Propagation of gains required to implement the QNG filter of Fig. 1. Gains are separated into interacting LMMSE and game
blocks. All agents perform a full network simulation in which they compute the gains of all other agents. This is necessary because when we
compute the play coefficients vj,t in the game block, agent i builds the matrix Lt that is formed by the blocks Lj,t of all agents [cf. (25)].
This full network simulation is possible because the network topology and private signal models are assumed to be common knowledge.
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Fig. 3. Line, star and ring networks.

filter block as these are used in the LMMSE gains and covariance updates. The LMMSE block feeds the gains

Kj
s (t) and Kj

ω(t) to the game block as these are needed to update Lj,t and kj,t.

A fundamental observation is that agent i is keeping track of the matrices and vectors in Fig. 2 in their entirety

and not only of their components corresponding to himself. The reason for this is the step in the game block in

which we compute the play coefficients vj,t. To solve this system of equations we need to build the matrix Lt that

is formed by the blocks Lj,t of all agents. All of these computations for other agents are internal, however. The

QNG as shown in Fig. 1 simply needs access to the LMMSE gains Ki
s(t) and Ki

ω(t) fed from the filter block as

well as the observation matrix Hi,t and the play coefficients vi,t fed from the game block.

IV. NUMERICAL EXAMPLES

We use the QNG filter derived earlier to explicitly propagate individual beliefs and compute the equilibrium

actions locally for the coordination game introduced in Section II-B. Agents weight estimation and coordination
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Fig. 4. Values of agents’ actions over time for the coordination game and networks in Fig. 3, respectively. Each line plots agent i’s action
at each time. Agents reach consensus in the optimal estimate ω̂∗ in the number of steps equal to the diameter of the corresponding network.

components of the payoff (12) equally, that is, λ = 0.5. In all of the examples, we set the true value of the stock

to be ω = $5, and signal structure is as given by (19) where εi is Gaussian with mean zero and Ci = 1. We test

the QNG filter on various networks.

We first consider line (N = 5), star (N = 5) and ring (N = 10) networks depicted in Fig. 3. The evolution of

each agent’s action over time is depicted in Figs. 4 (a)–(c) for the corresponding line, star and ring networks. The

results show that agents reach consensus in their actions as indicated by the asymptotic consensus result described

in Section II-C. Furthermore, the consensus action is the optimal estimate of the stock value ω̂∗ := E[ω
∣∣ s] which

is also the BNE of the complete information game. Note that this does not necessarily imply that agents learn the

true value of all the private signals; rather, this implies that they learn the sufficient statistic (in this case, the mean

of the private signals) to calculate the optimal estimate of ω.

We further evaluate convergence behavior of the QNG filter in geometric and random networks shown in Figs. 5

(a)–(b), respectively. Both networks contain N = 50 agents. For the geometric network, agents are randomly placed

on a 4m by 4m square, and then pairs that are less than 1m apart are connected. In the random network pairs are

connected with probability 0.2. The evolution of each agent’s action values over time is depicted in Figs. 6 (a)–(b)

for the geometric and random networks, respectively. In this case, we also observe that the action consensus is

achieved at ω̂∗ implying that consensus holds for any connected network.

Our characterization of agents’ updates enables us to characterize the convergence rates based on network

properties. In the three benchmark networks of Fig. 3, diameter of the network ∆ is the sole determinant of

the convergence rate, that is, agents’ actions converge in exactly ∆ steps in all these cases; see Figs. 4 (a)–(c).

The diameters of the geometric and random networks are 7 and 3, respectively. Convergence to consensus action

happens in O(∆) for both networks; see Figs. 6 (a)–(b). In all of these examples, we observe that ∆ is the sole

determinant of convergence rate. It is shown in [30] that agents on a connected network converge to ω̂∗ in at most

2N∆ steps for the payoff function u(ω, ai) = −(ω−ai)2. In the same paper, it is also conjectured that convergence

occurs in O(N) steps. The model exhibiting no payoff externalities with the payoff function u(ω, ai) = −(ω−ai)2

is a specific case of the general framework presented in this paper. Therefore, we expect similar results regarding
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Fig. 5. Geometric (a) and random (b) networks with N = 50 agents. Agents are randomly place on a 4meter × 4meter square. There exists
an edge between any pair of agents with distance less than 1 meter apart in the geometric network. In the random network, the connection
probability between any pair of agents is independent and equal to 0.2.
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Fig. 6. Values of agents’ actions over time in the coordination game for geometric and random networks in Fig. 5 (a) and Fig. 5 (b),
respectively. Each line indicates an agent’s sequence of actions over the time horizon. Agents reach consensus at the optimal estimate value
ω̂∗ in number of steps proportional to the diameter of the corresponding network.

convergence rates to hold for the QNG filter. Furthermore, our simulation results indicate that 2N∆ and O(N) are

crude upper bounds for the convergence rate. We conjecture that convergence happens in O(∆) steps; however,

proving this remains an open problem.

V. CONCLUDING REMARKS

This article provides an overview of recent results in social learning models in presence of payoff externalities

with a focus on agent behavior. We presented a framework to model repeated games of incomplete information over

networks and showed that when agents’ utilities are quadratic—under certain assumptions—agent over a connected

network eventually reach consensus in their actions and expected payoffs.

Algorithmic aspects of rational learning received special attention. We derived the QNG filter for propagating

beliefs in quadratic network games when signals are Gaussian. Numerical examples were provided for various

network structures. Based on simulations, we stated and discussed results that show convergence rates based on

network diameter.
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VI. CALLOUT: EXAMPLE OF LEARNING WITH PAYOFF EXTERNALITY

In this section, we give an example of rational behavior in a model with both informational and payoff externalities.

The example illustrates how rational agents are able to rule out possible states of the world upon observing actions

of their neighbors.

There are three agents in a line network; that is, N = {1, 2, 3}, N1 = {2}, N2 = {1, 3}, and N3 = {2}. The

possible states of the world belong to the set, Ω = {ω1, ω2, ω3}. Agents have a common uniform prior over the

possible states. At the beginning, agents receive private signals s1, s2, and s3. Based on s1, agent 1 can distinguish

whether the true state is ω3 or belongs to the set {ω1, ω2}. The private signal of s2 does not carry any information. s3

reveals whether the true state is ω1 or belongs to the set {ω2, ω3}. We assume that agents know the informativeness

of the private signals of all agents; i.e., the partition of the private signals is known by all agents. There are two

possible actions, A = {l, r}.

Agent i’s payoff depends on the actions of the other two agents aN\{i},t := {aj,t}N\i in the following way:

ui(ω, ai,t, aN\{i},t) =


1 if ω = ω1, ai,t = l, aN\{i},t = {l, l},

4 if ω = ω3, ai,t = r, aN\{i},t = {r, r},

0 otherwise.

(39)

According to (39), agent i earns a payoff only when all the agents choose l and the state is ω1 or when all the

agents choose r and the state is ω3.

Initial strategies of agents consist of functions that map their observed histories at t = 0 (which are only their

signals) to actions. Let (σ∗1,0, σ
∗
2,0, σ

∗
3,0) be a strategy profile at t = 0 defined as

σ∗1,0(s1) =


l if s1 = {ω1, ω2},

r if s1 = {ω3},
σ∗2,0(s2) = r,

σ∗3,0(s3) =


l if s3 = {ω1},

r if s3 = {ω2, ω3}.

Note that since agent 2’s signal is uninformative, he needs to take the same action regardless of his signal.

Agents’ strategies at a time t ≥ 1 map their observed histories to actions. For t ≥ 1 let the (σ∗1,t, σ
∗
2,t, σ

∗
3,t) be a
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strategy profile defined as

σ∗1,t(h1,t) =


l if s1 = {ω1, ω2},

r if s1 = {ω3},

σ∗2,t(h2,t) =


r if a1,t−1 = a3,t−1 = r,

l otherwise,

σ∗3,t(h3,t) =


l if s3 = {ω1},

r if s3 = {ω2, ω3}.

Note that even though agents’ strategies could depend on their entire histories, in the above specification agent 1

and 3’s actions only depend on their private signals, whereas, agent 2’s actions only depend on the last actions

taken by his neighbors.

We argue that σ∗ = (σ∗i,t)i∈N ,t=0,1,... as defined above is an equilibrium strategy. We assume that the strategy

profile σ∗ is common knowledge and verify that agents’ actions given any history maximizes their expected utilities

given the beliefs induced by the Bayes’ rule.

First, consider the time period t = 0. Suppose that agent 1 observes s1 = {ω1, ω2}. He assigns one half probability

to the event ω = ω1 in which case—according to σ∗—agent 2 plays r and agent 3 plays l, and he assigns one half

probability to state ω = ω2 in which case agent 2 plays r and agent 3 plays r. Therefore, his expected payoff is

zero regardless of the action he takes; that is, he does not have a profitable unilateral deviation from the strategy

profile σ∗. Next suppose that agent 1 observes s1 = {ω3}. In this case he knows for sure that ω = ω3 and that

agents 2 and 3 both play r. Therefore, the best he can do is also to play r—which is the action specified by σ∗.

This argument shows that agent 1 has no profitable deviation from σ∗ regardless of the realization of s1. Next, we

focus on agent 2. She has no information at t = 0. Therefore, he assigns one third probability to the event ω = ω1

in which case a1,0 = a3,0 = l, one third probability to the event ω = ω3 in which case a1,0 = l and a3,0 = r,

and one third probability to the event ω = ω2 in which case a1,0 = a3,0 = r. Therefore, his expected payoff of

taking action r is 4/3, whereas his expected payoff of taking action l is 1/3. Finally, considering agent 3, if he

observes s3 = {ω1}, he knows that agents 1 and 2 play l and r respectively, in which case he is indifferent between

l and r. If he observes s3 = {ω2, ω3}, on the other hand, he assigns one half probability to ω = ω2 in which case

a1,0 = l and a2,0 = r, and one half probability to ω = ω3 in which case a1,0 = a2,0 = r. Therefore, he strictly

prefers playing r in this case. We have shown that at t = 0, no agent has an incentive to deviate from the actions

prescribed by σ∗. We have indeed shown something stronger. Strategies σ∗1,0 and σ∗2,0 are dominant strategies for

agents 1 and 3, respectively; that is, regardless of what other agents do, agents 1 and 3 have no incentive to deviate

from playing these strategies.
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Next, consider the time period t = 1. In this time period, agent 2 knowing the strategies that agents 1 and 3

used in the previous time period learns the true state; namely, if they played {l, l} the state is ω1, if they played

{r, r} the state is ω3, and otherwise the state is ω2. Also, by the above argument agents 1 and 3 will never have

an incentive to change their strategies from what is prescribed by σ∗. Therefore, σ∗ is consistent with equilibrium

at t = 1 as well. The exact same argument can be repeated for t > 1.

Now that we have shown that σ∗ is an equilibrium strategy, we can focus on the evolution of agents’ expected

payoffs. For the rest of the example, assume that ω = ω1. At t = 0, agent 3 learns the true state. Agents 1, 2,

and 3 play l, r, and l, respectively. Since agents 1 and 2 know that agent 2 will play a2,0 = r, their conditional

expected payoffs at t = 0 are zero. Agent 2 on the other hand, assigns one third probability to the state ω3 and

action profile (r, r, r); therefore, his expected payoff is given by 4/3. At t = 1, all agents play l. Agent 2 learns

the true state. Since agents 2 and 3 know the true state and known that the action profile that is chosen is (l, l, l),

their expected payoffs are equal to one. On the other hand, agent 1 does not know whether the state is ω1 or ω2

but he knows that the action profile taken is (l, l, l); therefore, his conditional expected payoff is equal to 1/2. In

later stages, agents changes neither their beliefs nor their actions.

The example illustrates an important aspect of learning in presence of payoff externalities. Agents need to infer

about the actions of other agents in the next stage based on the information available to them and using the

knowledge of equilibrium strategy in order to make prediction about how others would play. This inference process

includes reasoning about others’ reasoning about actions of self and other agents which in turn leads to the notion

of equilibrium strategy that we formally defined in Section I.
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[2] Y. Bramoullé, R. Kranton, and M. D’Amours. Strategic interaction and networks. Working Paper, 2009, Available at SSRN:

http://ssrn.com/abstract=1612369.
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