
A General, Open-Loop Formulation for Reach-Avoid Games

Zhengyuan Zhou, Ryo Takei, Haomiao Huang, and Claire J. Tomlin

Abstract— A reach-avoid game is one in which an agent
attempts to reach a predefined goal, while avoiding some
adversarial circumstance induced by an opposing agent or
disturbance. Their analysis plays an important role in problems
such as safe motion planning and obstacle avoidance, yet
computing solutions is often computationally expensive due
to the need to consider adversarial inputs. In this work, we
present an open-loop formulation of a two-player reach-avoid
game whereby the players define their control inputs prior to
the start of the game. We define two open-loop games, each
of which is conservative towards one player, show how the
solutions to these games are related to the optimal feedback
strategy for the closed-loop game, and demonstrate a modified
Fast Marching Method to efficiently compute those solutions.

I. INTRODUCTION

A reach-avoid game is one in which one player attempts
to arrive at a goal set in the state-space while avoiding
some other, undesired set of states. The goal of the opposing
player is to prevent the first player from arriving at its goal,
possibly by driving the first player into the undesired set.
Such games encompass a large number of robotics and con-
trol applications. For example, many safe motion-planning
problems may be formulated as reach-avoid games, where
the goal is to control an agent into some desired state or
configuration while avoiding a set of obstacles or otherwise
unsafe configurations. Computing solutions to such games is
complicated by the adversarial interaction between the two
players.

There have been many approaches to safe-motion planning
and reach-avoid problems using probabilistic formulations,
where a probability distribution is assigned to the actions
of the moving obstacles and a solution is computed that
minimizes an expected cost with respect to the probability
of collision [1]–[5].

In safety-critical applications, a worst-case approach can
be taken by treating the two players as adversarial agents
each attempting to act in some optimal manner. In certain
cases, geometric methods can be used to compute the set
of states under which collision with moving obstacles is
inevitable [6], [7]. The most complete approach to the
reach-avoid game is to formulate the problem as a differen-
tial game and solve the related Hamilton-Jacobi-Isaacs(HJI)
equation [8]–[11]. The player attempting to reach the goal is

This work is supported in part by ONR under HUNT Award Number
550740, by AFOSR MURI FA9550-10-1-0567, and NSF under grant CNS-
0931843

Z. Zhou, R. Takei, and C. J. Tomlin are with the Depart-
ment of Electrical Engineering and Computer Sciences, University of
California, Berkeley, CA 94720, USA {zhengyuan, rrtakei,
tomlin}@EECS.Berkeley.edu

H. Huang is with the Department of Aeronautics and
Astronautics, Stanford University, Stanford, CA 94305, USA
haomiao@stanford.edu

treated as an attacker whose objective is to arrive at the goal,
and the opposing player is treated as a defender attempting
to prevent this by intercepting the attacker. The value of the
game is defined as the time required for the attacking player
to reach the goal, and the objectives of the attacking and
defending players are minimizing and maximizing this value,
respectively. This value can be approximated numerically on
a grid, and control inputs extracted via numerical differenti-
ation [9], [12].

Unfortunately, computing solutions to HJI equations is
computationally infeasible for large problems, as the grid
required for approximating the value function grows expo-
nentially as size of the state-space increases. Even smaller
problems such as 2-player, kinematic games, typically cannot
be solved in real-time, requiring pre-computation.

A previous publication presented an open-loop formula-
tion to the reach-avoid game, in which the players select
their inputs prior to the start of the game and then follow
those inputs without modification during the game [11].
The information pattern was conservative from the attacker’s
perspective, in that the defender was allowed full knowledge
of the attacker’s input choice. In addition to the open-loop
reach-avoid game, a modified Fast Marching Method (FMM)
algorithm for efficiently computing attacker-conservative so-
lutions was also presented.

In this paper, we present a general formulation of the
open-loop reach-avoid game as a pair of differential games,
and relate them to the optimal, feedback solution, with the
formulation and information patterns presented in Section II.
Each game is played conservatively from the perspective of
one player, with the upper (maximum) value of the game
representing conservatism on the part of the attacker, and
the lower (minimum) value representing conservatism on
the part of the defender. We then expand upon the results
presented in a previous publication [11] on computing the
upper value to computing a bound for the lower value in
Section III. We can then relate the optimal control inputs
of the upper and lower games to the optimal, closed-loop,
feedback control input derived by solving the HJI equation,
and state a condition under which the controls are equivalent,
as shown in Section IV. Finally, we demonstrate a modified
FMM algorithm to compute this lower bound and extract the
related player control inputs, as shown in Section V.

II. GAME FORMULATION AND INFORMATION PATTERNS

Suppose there are two players P1 and P2, whose states are
confined in a bounded, open domain Ω. The domain Ω can be
further partitioned as follows: Ω = Ωfree∪Ωobs, where Ωfree
represents the free space that the two players can move, while
Ωobs are impenetrable obstacles for both players. Define Σ =

{σ : [0,∞) → S1} as the set of controls for each player,
where S1 is the set of all vectors of unit length. We assume
that the dynamics of the players are defined by the decoupled
system for t > 0:

ẋ1(t) = f1(x1(t), a(t))a(t), x1(0) = x0
1,

ẋ2(t) = f2(x2(t), b(t))b(t), x2(0) = x0
2.

(1)

Here, the functions f1, f2 : Ω × S1 → R are assumed to be
positive and Lipschitz continuous. Throughout the article, we
shall use a to denote a control for P1 and b to denote a control
for P2, with a, b ∈ Σ. We note that by the definition of Σ,
a(t) and b(t) represent the directions in which P1 and P2

are moving respectively at time t. And f1, f2 represent the
speeds of P1 and P2 respectively in (1). Given a, b ∈ Σ, we
call the solution x1(·), x2(·) to the initial value problem (1)
as paths for P1 and P2 respectively. We shall use the notation
x(·) = (x1(·), x2(·)) for the joint path, x0 = (x0

1, x
0
2) for the

joint initial state and x(t) = (x1(t), x2(t)) for the joint state
at time t. For notational simplicity, we shall drop the explicit
dependence of the paths on the controls and initial states.

We now define the payoff for the reach-avoid game. We
first define two sets: T ⊂ Ω, the target set, and A ⊂ Ω2,
the avoid set. The goal for P1 is to reach T as quickly as
possible, while avoiding entering a joint state in A with P2.
The payoff function is then defined as:

J (x0, a, b) = inf{t ≥ 0 | x1(t) ∈ T ,x(s) 6∈ A,∀s ∈ [0, t]},
(2)

with the convention that the infimum of the empty set is
infinity. We say P1 is captured by P2 if their joint state
enters A.

For convenience, we define the optimal time-to-reach
functions for P1 and P2 respectively:

u1(x) = inf
a∈Σ
{t ≥ 0 | x1(t) = x}, (3)

u2(x) = inf
b∈Σ
{t ≥ 0 | x2(t) = x}. (4)

For t ≥ 0, we also characterize the reachability of P1 and
P2 respectively as follows:

R1(t) = {x | u1(x) ≤ t}, (5)
R2(t) = {x | u2(x) ≤ t}. (6)

Note that in defining the t-reachable set for both players, we
are not concerned with the avoid set A.

A. Types of value functions

Given the payoff of a differential game, the value of the
game depends on the information pattern employed by each
player. In this section, we introduce several types of value
functions that are relevant here.

Definition 1: The open-loop upper value and the open-
loop lower value of the reach avoid game are defined
respectively as follows:

v(x0) = inf
a∈Σ

sup
b∈Σ
J (x0, a, b),

v(x0) = sup
b∈Σ

inf
a∈Σ
J (x0, a, b).

(7)

The open-loop values can be seen as the most conservative
information pattern, where one player chooses the optimal
control knowing the opponent’s choice of control. The upper
value is defined conservatively towards P1 since P2 will
choose the control in response to the control already chosen
by P1, with P1 assuming the worst case. Conversely, the
lower value is conservative towards P2. Due to this con-
servative bias towards each player, it can be shown that
v(x0) ≤ v(x0) for all x0. Corresponding to the open-
loop upper and lower values, we have the optimal open-loop
controls defined for both players in both information patterns.
For the upper value, we denote the optimal controls (not
necessarily unique) of P1 and P2 as ā and b̄ respectively,
formally written as:

ā ∈ arg inf
a∈Σ

sup
b∈Σ
J (x0, a, b)

b̄ ∈ arg sup
b∈Σ
J (x0, ā, b)

(8)

Similarly, for the lower value, we denote we denote the
optimal controls (not necessarily unique) of P1 and P2 as
a and b respectively, formally written as:

b ∈ arg sup
b∈Σ

inf
a∈Σ
J (x0, a, b)

a ∈ arg inf
a∈Σ
J (x0, a, b)

(9)

Another more well-known information pattern is that of
the non-anticipative strategy game, otherwise referred to as
the feedback strategy game. A feedback strategy γ[σ] maps a
opposing input sequence (and its corresponding state) into a
control. The set of admissible feedback strategies is defined
in the following manner: let σp, σ̂p ∈ Σ be two controls,
then the set of admissible feedback strategies F is:

F :=

{γ : Σ→ Σ | ∀t > 0, σp|ts=0 = σ̂p|ts=0

implies γ[σp]|ts=0 = γ[σ̂p]|ts=0}.

Then the value of this game is defined as:

U(x0) = inf
γ∈F

sup
σp∈Σ

J (x0, γ[σp], σp). (10)

There is a corresponding “sup inf” definition, but they co-
incide provided the value is continuous and that Isaacs’
condition [17] holds, which is trivially true due to decoupled
dynamics. The key property distinguishing the feedback
strategy value from the open-loop values is that the former
satisfies the dynamic programming principle (DPP). The
DPP yields a necessary and sufficient condition that U(x, y)
can be characterized by the Hamilton-Jacobi-Isaacs (here-
after referred to as HJI) equation, where x and y are the
states for P1 and P2 respectively:

H(∇xU,∇yU, x, y) = 1, (11)

where

H(p, q, x, y) = max
α∈S1

{p · αf1(x, α)}+ min
β∈S1

{q · βf2(y, β)} .
(12)

For the above Hamiltonian, it can be shown that U is the
viscosity solution to the PDE (11), provided it is continuous.
Furthermore, it is be related to the open-loop values as

v(x0) ≤ U(x0) ≤ v(x0). (13)

While standard methods for solving (11) on a Cartesian
grid exist, they generally suffer from the curse of dimension-
ality. The complexity increases exponentially in the number
of players, which makes it computationally intractable even
for a modestly sized grid. In [11] and [14], novel methods
for computing the open-loop values are presented. The main
advantage of these methods is that all computations are
performed on the underlying domain, thereby avoiding the
curse of dimensions. In [11], we have presented an efficient
way to compute v for a reach-avoid game known as capture-
the-flag (CTF), which can be easily extended to computing
v for the general reach-avoid game.

In the next section, we provide a way to compute a lower
bound on v. This leads to the fact that, for a class of initial
states where the open-loop upper and lower values coincide,
the feedback strategy value is U(x0) = v(x0) = v(x0).
We then show that in those cases, the equality of values
implies the equality of the controls. In other words, for those
cases we can verify that we have found the optimal controls
without actually solving the HJI equations. For these initial
value problems, we can have both fast computation and the
optimality of the controls obtained.

III. COMPUTATION OF LOWER BOUNDS ON v

In general, computing v is not a trivial task. In this section,
we seek to find a straightforwardly computable lower bound
to v. Furthermore, we show that, in some cases, the lower
bound is equal to v.

Definition 2: For each y ∈ Ω, we define the partial avoid
set with respect to y to be

A1(y) = {x ∈ Ω | (x, y) ∈ A}.
That is, A1(y) is the set of all states of P1 that are captured
with P2’s position fixed at y.

We first state a naive lower bound without proof.
Proposition 1: v(x0) ≥ infx∈T u1(x).
Intuitively, v must be at least as large as the shortest time

required for P1 to reach the target in the absence of P2.
In fact, if we restrict our attention to the reach-avoid game
with point capture(i.e. capture achieved when x1 = x2), then
we have strict equality between the two quantities. Induction
shall furnish a simple argument that we have

v(x0) = inf
x∈T

u1(x) (14)

if for each y, the cardinality of A1(y) is finite.
Definition 3: Given x ∈ Ω define

t∗(x;x0
1) = inf

a∈Σ
{t ≥ 0 |x1(t) ∈ T , x1(0) = x0

1,

(x1(s), x) 6∈ A,∀s ∈ [0, t]}.
That is, given that P2 remains at the point x throughout,
t∗(x;x0

1) is the shortest time for P1, starting at x0
1, to reach

the target without ever getting ”captured” by P2.

Remark 1: This definition together with Proposition 1
naturally leads to

v(x0) ≥ t∗(x0
2;x0

1). (15)
Definition 4: For any subset R ⊂ Ω with x0

2 ∈ R, we
define the following function:

wR(x;x0
2) = inf

b∈Σ
{t ≥ 0 | x2(t) = x, x2(0) = x0

2,

x2(s) ∈ R,∀s ∈ [0, t]}.
Thus, wR(x;x0

2) is the minimum time for P2 to reach x from
x0

2 by traveling along a path that is contained in R. Note that
the set R may serve as a restriction on how fast P2 can get to
a point of interest since the path must be contained entirely
in R. Therefore, it is possible that P2 may not be able to
take the optimal path in the original domain. In some sense,
wR(x;x0

2) characterizes a reach time for P2 and t∗(x;x0
1)

characterizes a reach time for P1. The key to computing the
lower bound for v lies in connecting those two quantities via
the following set R∗.

Definition 5: Let R∗ ⊂ Ω be the maximal set containing
x0

2 such that for all y ∈ R∗ the following holds:

wR∗(y;x0
2) < t∗(y;x0

1). (16)
Therefore, R∗ is the set of all points that P2 may move in,
such that P2 can arrive at a point x before P1 can end the
game. To see that R∗ exists, we note that {x0

2} is certainly
a set that satisfies the inequality (16). We therefore take
the collection of all sets that satisfy the inequality. We take
the union of the collection, which certainly still satisfies the
inequality since for every fixed x and x0

2, the function value
will never decrease when we enlarge a set R to a larger set
R̃ such that R ⊂ R̃. Therefore the union is maximal, and
the maximality implies its uniqueness.

The following lemma characterizes an important property
of R∗ that shall prove useful in the computations.

Lemma 1: Given a point x ∈ Ω, we have wR∗(x;x0
2) <

t∗(x;x0
1) if and only if x ∈ R∗.

Proof: If x ∈ R∗, then by definition,wR∗(x;x0
2) <

t∗(x;x0
1) ≤ ∞.

If x is not in R∗, then since we require in the definition of
the function wR that the path being taken should be contained
entirely in R∗, we conclude that there is no path for P2

that starts at x0
2 and ends at x while still satisfying the

requirement that whole path is contained in R∗. Therefore,
x can never be reached, hence wR∗(x;x0

2) =∞.
Remark 1 gives us a naive bound on the open loop lower

value. Using t∗ and R∗, we can construct a much better lower
bound. To this end, we provide a general lower bound on v.

Definition 6: Given a joint initial state x0, we define
v(x0) as follows:

v(x0) = sup
x∈R∗∗

t∗(x),

where

R∗∗ = {x ∈ R∗ |A1(x) ∩R1(T (x)) = ∅,
T (x) = wR∗(x;x0

2)}.

Essentially, R∗∗ is a set that contains all the useful points in
R∗, that is, points x at which P2 can arrive at before P1, and
along a path that ensures that P1 cannot end the game before
P2 reaches x. This is important as A1(x) is only an obstacle
for P1 after P2 has reached x. This leads to the following
result.

Theorem 1: Given a joint initial state x0, we have
v(x0) ≤ v(x0).

Proof: Take any x ∈ R∗. By definition, wR∗(x;x0
2) <

t∗(x;x0
1). Thus, P2 can reach the point x in time T =

w(x;x0
2). Let σb ∈ Σ be the control for P2 that reaches x

at time T and remains stationary thereafter. That is, P2 can
control itself so that A1(x) serves as a stationary obstacle
to P1 for all time greater than or equal to T . But the
assumption A1(x2) ∩ R1(T) = ∅ implies that P1 cannot
distinguish whether A1(x) is an avoid set that has been
present for all t ≥ 0 or just for t ≥ T . Thus, it would
take P1 at least t∗(x;x0

1) time to reach T , since if P2

were to start at x and remains stationary throughout, then
it would by definition take the first player t∗(x;x0

1) to reach
the target. As a result, we have J (x0, a, σb) ≥ t∗(x;x0

1)
for any choice a ∈ Σ, which implies infa∈Σ J (x0, a, b∗) ≥
t∗(x∗2). Finally, since v(x0) = supb∈Σ infa∈Σ J (x0, a, b) ≥
infa∈Σ J (x0, a, σb) ≥ t∗(x;x0

1). But since x is any point
in R∗, we have v(x0) ≥ supx∈R∗ t∗(x;x0

1) , and hence the
desired inequality.

With this understanding of R∗∗, we may select the
control input for P2 as moving to a point x∗2 ∈
arg supx∈R∗∗ t∗(x;x0

1) and remaining stationary at x∗2 there-
after. Since P2 is guaranteed to arrive at x∗2 before P1,
A1(x∗2) appears to P1 as a permanent obstacle, forcing it
to take at least t∗(x∗2, x

0
1) to reach the goal.

IV. OPTIMALITY OF CONTROLS

We note that since v is a lower bound for v ,by invoking
Ineqaulity (13),we see that v = v implies the following:

v = U = v. (17)

This provides us with an easy way to test if the open loop
values coincide with the closed loop value U . In the case
that they are indeed equal, we shall show that the controls
obtained from the open loop computations also coincide with
controls from solving the HJI equation.

To this end,we begin with a useful characterization. Let a∗

and b∗ be the controls extracted from the Hamilton-Jacobi-
Isaacs formulation, i.e. U(x0) = J (x0, a∗, b∗).

Lemma 2: J (x0, a∗, b) ≤ J (x0, a∗, b∗) ≤ J (x0, a, b∗)
for all a, b ∈ Σ.

Proof: We will only prove the second inequality, using
Equation (10); the first inequality can be proved similarly by
considering the ”sup inf” definition of the value.

Take any a ∈ Σ, and consider γ̄ ∈ F such that γ̄(b∗) = a.

J (x0, a∗, b∗) = inf
γ∈F
J (x0, γ(b∗), b∗)

≤ J (x0, γ̄(b∗), b∗)

= J (x0, a, b∗).

This lemma is a restatement of the optimality condition
for the feedback control: when both players are playing
according to the optimal controls extracted from the solutions
to the HJI equation, neither player has any incentive to
deviate from this best control, as any deviation only makes
that player worse off.

Theorem 2: Denote Σ∗P1
and Σ∗P2

to be the set of optimal
controls for P1 and P2 respectively extracted from the
solution to the HJI equation.

1) Let ā and b̄, defined per (8), be two controls extracted
from computing v(x0) for P1 and P2 repectively, not
necessarily unique . If v(x0) = v(x0), then ā ∈ Σ∗P1

,
b̄ ∈ Σ∗P2

.
2) Let a and b,defined per (9), be two controls extracted

from computing v(x0) for P1 and P2 repectively, not
necessarily unique. If v(x0) = v(x0), then a ∈ Σ∗P1

,
b ∈ Σ∗P2

.
Proof: Take ā ∈ infa∈Σ supb∈Σ J (x0, a, b), we have

for any P2’s control σP2
∈ Σ

v(x0) = inf
a∈Σ

sup
b∈Σ
J (x0, a, b)

= sup
b∈Σ
J (x0, ā, b) ≥ J (x0, ā, σP2

)

In particular, if we take σP2 = b∗ , where b∗ ∈ Σ∗P2
, we have

U(x0) = J (x0, a∗, b∗) = v(x0) ≥ J (x0, ā, b∗)

But by Lemma 2, we also have J (x0, a∗, b∗) ≤
J (x0, ā, b∗). So it must be that J (x0, a∗, b∗) =
J (x0, ā, b∗). Therefore we have ā ∈ Σ∗P1

.
By (8), b̄ ∈ supb∈Σ J (x0, ā, b) = supb∈Σ J (x0, a∗, b) ≥

J (x0, a∗, b), for any b ∈ Σ. By Lemma 2, we have b̄ ∈ Σ∗P2
.

The second case can be proved analogously by noting that
in this case v = v and using the other inequality in Lemma 2.

Remark 2: Those two statements together state that if the
two open-loop values coincide, then ā produces the same
value as a, and both yield the same value as the control
computed for P1 by the solver of HJI equations. The same
is true for b̄ , b and the control computed for P2 by the
solver of HJI equations. Under the conditions stated in the
above theorem, this indeed provides us with the efficient
computation of the optimal controls without the cost incurred
by solving HJI. In the case v(x0) = v(x0) = ∞, even
though P1’s controls extracted from the open-loop lower or
upper value are optimal in the HJI sense, they are trivial
in the sense under such a condition any control of P1 is
equally bad. Since v(x0) = ∞, P2 can always prevent P1

from reaching the target even though P2 is being extremely
conservative. Thus there are no inputs for P1 such that P1

can ever arrive at the target.
Practically speaking, the equivalence presented above

gives a useful way of verifying that the open-loop control
computations may be followed without any loss of optimal-
ity. Note that the conditions under which this equivalence
holds are not particularly restrictive ones, and we are not

limited to initial conditions where player actions are entirely
independent of each other. It is certainly true that if the
players begin the game in a way such that neither can affect
the other’s paths, for example if the players begin the game
far from each other and relevant goals, then the open-loop
and close-loop values will be equal. However, this is not a
necessary condition, and as the computational example in
Section VI shows, there are configurations where the open-
loop values produce optimal results that requires both the
attacker and defender to modify their actions to account for
the presence of the other player.

V. THE MODIFIED FAST MARCHING METHOD FOR
COMPUTING V

Having established a bound v based on t∗(x;x0
1) and

wR(x;x0
2), as well as the set R∗, we would like to have ef-

ficient methods to compute those quantities. The FMM [15],
[16], with appropriate modifications, lends itself well to
the current context. As FMM has been described in detail
elsewhere, we shall mainly be concerned with the specific
modifications employed to compute the quantities at hand,
while referring the reader to the general references for the
details of the basic FMM.

We use a N by N uniform 2-D cartesian grid to ap-
proximate the domain Ω. We shall use t∗(i,j) to denote the
function value t∗(x;x0

1), with x approximated by the grid
node (i, j). We also use w(i,j)

R to denote the function value
wR(x;x0

2). Finally, A(i,j)
1 denotes the partial avoid set A1(y)

with y approximated by the node (i, j). We use Accepted
to represent the the collection of all computed grid nodes
(i, j) whose t∗ are computed, we use NarrowBand to denote
the collection of the grid nodes which are to be added to
Accepted. Finally FarAway represents the grid nodes that
are neither in Accepted nor NarrowBand. W and T are 2 N
by N arrays which are used to store values for w(i,j)

R and
t∗(i,j) respectively for all grid nodes (i,j). W(i,j) and T(i,j)

represent the values stored for node (i, j) in the array W
and T respectively. The algorithm then proceeds as follows:

1) W(i,j) = ∞, if (i, j) ∈ Ωobs, and place those grid
nodes into FarAway.

2) W(i,j) = 0, if (i, j) is the initial position of P2, and
set (i, j) to be in Accepted.

3) For each node (i, j) adjacent to a node in Accepted,
run the Eikonal update as described in [11]. After
running the update, we have W(i,j) = w

(i,j)
R for all

(i, j) adjacent to a node in Accepted and place these
nodes in NarrowBand

4) Take the (i, j) that has the smallest W(i,j). If it is
equal to ∞ return W and T and continue to Step 5,
otherwise compute t∗(i,j) by doing the following:
Treating A(i,j)

1 as an obstacle, compute t∗(i,j) using
standard FMM. Set T(i,j) to be t∗(i,j) and put (i, j)
into Accepted. If W(i,j) < t∗(i,j), set W(i,j) to t∗(i,j),

otherwise set W(i,j) to be ∞. Now return to step 3.

5) Find the node (i, j) in W that maximizes T(i,j), record
this value in a variable M and set T(i,j) to be -
∞. Use the FMM presented in [11] to compute the
W(i,j)-reachable set of P1 and test if it has nonempty
intersection with A(i,j)

1 . If so, then return to step 5.
Otherwise, set v = M and return v.

Remark 3: Note that instead of computing t∗ for every
point, we compute it “on the fly” in the sense that we stop im-
mediately when the smallest W(i,j) in Narrowband is equal to
∞. This saves a considerable amount of computational time.
We also note that the justification for Step 4 is Lemma 1,
since if W(i,j) ≥ t∗(i,j),then (i, j) is not in R∗, which by
the lemma, means W(i,j) should be ∞. Later, if we want to
extract R∗, we need only look at the nodes that have finite
values.

VI. NUMERICAL RESULTS

We now show numerical results for an example scenario to
illustrate the concepts presented in this paper and to demon-
strate the algorithm presented in Section V. Figure 1(a)
shows the initial condition for the scenario considered. The
gray, rectangular regions in the middle are the obstacles,
and the green, semi-circular region to the right is the target
set. The initial positions of both players are plotted, along
with the capture radius around P2. In this scenario, P2 has
a maximum speed of 0.25 and P1 has a maximum speed of
1. Figure 1(b) shows R∗ and contour plots for t∗ within R∗.
Obviously t∗ increases as P2 moves toward the opening in
the obstacles, forcing P1 to move up around the obstacles in
order to reach the goal. The final paths of the two players
are shown in Figure 1(c): as expected P2 moves to block the
opening, as that results in the maximum t∗.

The same scenario computed using the upper value so-
lution discussed in [11] is shown in Figure 2. In this case,
P1 is playing conservatively. S1 denotes the set of points
that P1 can safely reach before P2, given that P2 has
knowledge of P1’s inputs. Again, P1 is forced to move
up over the obstacles as opposed to passing through the
central opening. The control inputs in the two cases are the
identical, implying that the solutions found are equivalent to
the optimal, feedback strategy results.

The computations are performed on a 100x100 grid using
compiled C++ code in Matlab, on a Macbook Pro laptop
with a 2.4 GHz Intel Core i7 processor and 8 GB RAM.
Total elapsed time for computing R∗ and associated t∗ was
1.25 seconds.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a general formulation of
the open-loop reach-avoid game as a pair of games conser-
vative for the attacking and defending players, respectively.
By computing a lower bound on the open-loop lower value
game, we are able to show the relationship between the
values for the two open-loop games to the optimal, feedback

T

x
0
1

x
0
2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
0
1

x
0
2

R∗ T

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

T

x0
1

x
f
2

x0
2

x
f
1

(a) (b) (c)

Fig. 1. Example scenario showing (a) the initial conditions of the players, the target set T , and game domain, (b) the set R∗ with contours
plotted for t∗ within, and (c) the trajectories taken for each player, with equal time-to-reach contours for player 1 plotted.

S1

x
0
2

x
0
1

T

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 2. Solution to the upper value problem, showing the safe reachable
set S1 for P1 and the resultant path to the target set.

value. This has also allowed us to determine when the open-
loop game inputs are equal to the feedback optimal.

In addition to the theoretical results, we have presented
an algorithm for quickly computing the lower bound to the
lower value game, generating fast, feasible control inputs for
the defending player. Taken all together, the open-loop for-
mulation allows a control system to quickly evaluate a given
initial condition and potentially generate a feasible path. If no
feasible open-loop solution is found, the system can then fall
back on more complex, potentially time-intensive solution
methods.

For future work, we are currently extending the results
to vehicles with non-holonomic dynamics as well as im-
plementing the open-loop control in an iterative, model
predictive control-like method.

REFERENCES

[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd Ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 2005.

[3] M. P. Vitus and C. J. Tomlin, “Closed-loop belief space planning for
linear, Gaussian systems,” in ICRA, Shanghai, China, May 2011.

[4] N. Roy, G. Gordon, and S. Thrun, “Finding approximate POMDP
solutions through belief compression,” J. of Artificial Intelligence
Research, vol. 23, pp. 1–40, 2005.

[5] L. Blackmore, “Robust path planning and feedback design under
stochastic uncertainty,” in Proc. of the AIAA Conf. on Guidance,
Navigation and Control, Honolulu, HI, August 2008.

[6] T. Fraichard and H. Asama, “Inevitable collision states-a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024,
2004.

[7] J. Van Den Berg and M. Overmars, “Planning time-minimal safe paths
amidst unpredictably moving obstacles,” Int’l. J. of Robotics Research,
vol. 27, no. 11-12, p. 1274, 2008.

[8] L. C. Evans and P. E. Souganidis, “Differential games and
representation formulas for solutions of Hamilton-Jacobi-Isaacs
equations,” Indiana Univ. Math. J., vol. 33, no. 5, pp. 773–797, 1984.
[Online]. Available: http://dx.doi.org/10.1512/iumj.1984.33.33040

[9] T. Basar and G. Olsder, Dynamic Noncooperative Game Theory,
2nd ed. Philadelphia, PA: SIAM, 1999.

[10] H. Huang, J. Ding, W. Zhang, and C. Tomlin, “A differential game
approach to planning in adversarial scenarios: A case study on capture-
the-flag,” in ICRA, Shanghai, China, 2011.

[11] R. Takei, H. Huang, J. Ding, and C. Tomlin, “Time-optimal multi-stage
motion planning with guaranteed collision avoidance via an open-loop
game formulation,”in IEEE International Conference on Robotics and
Automation (ICRA), Minneapolis, Minnesota, 2012.

[12] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games,”
IEEE Trans. Automatic Control, vol. 50, no. 7, pp. 947–957, 2005.

[13] M. Bardi, “Some applications of viscosity solutions to optimal control
and differential games,” in Viscosity solutions and applications (Mon-
tecatini Terme, 1995), ser. Lecture Notes in Math. Berlin: Springer,
1997, vol. 1660, pp. 44–97.

[14] R. Takei, R. Tsai, Z. Zhou, and Y. Landa, “An efficient algorithm
for a visibility-based surveillance-evasion game,” Communications and
Mathematical Sciences, submitted, 2012.

[15] J. A. Sethian, “Fast marching methods,” SIAM Review, vol. 41, no. 2,
pp. 199–235, 1999.

[16] J. A. Sethian, Level set methods and fast marching methods, 2nd ed.,
ser. Cambridge Monographs on Applied and Computational Mathe-
matics. Cambridge: Cambridge University Press, 1999, vol. 3.

[17] R. Isaacs, Differential Games. New York: Wiley, 1967.

http://dx.doi.org/10.1512/iumj.1984.33.33040

	Introduction
	Game Formulation and Information Patterns
	Types of value functions

	Computation of Lower bounds on v
	Optimality of Controls
	The Modified Fast Marching Method for Computing v
	Numerical Results
	Conclusions and Future Work
	References

