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Abstract— This paper addresses the problem of estimating
the state of a vehicle moving in 3D based on inertial mea-
surements and visual observations of lines. In particular, we
investigate the observability properties of the corresponding
vision-aided inertial navigation system (VINS) and prove that
it has five (four) unobservable degrees of freedom when one
(two or more) line(s) is (are) detected. Additionally, we leverage
this result to improve the consistency of the extended Kalman
filter (EKF) estimator introduced for efficiently processing line
observations over a sliding time-window at cost only linear in
the number of line features. Finally, we validate the proposed
algorithm experimentally using a miniature-size camera and
a micro-electromechanical systems (MEMS)-quality inertial
measurement unit (IMU).

I. INTRODUCTION AND RELATED WORK

The miniaturization, reduced cost, and increased accuracy
of cameras and inertial measurement units (IMU) makes
them ideal sensors for determining the 3D position and
attitude of vehicles (e.g., automotive [1], aerial [2], space-
craft [3], etc.) navigating in GPS-denied areas. In particular,
fast and highly dynamic motions can be precisely estimated
over short periods of time by fusing rotational velocity and
linear acceleration measurements provided by the IMU’s gy-
roscopes and accelerometers, respectively. On the other hand,
errors caused due to the integration of the bias and noise in
the inertial measurements can be significantly reduced by
processing observations to point features detected in camera
images in what is known as a vision-aided inertial navigation
system (V-INS). Recent advances in VINS, have addressed
several issues, such as studying its observability [4], [5],
reducing its computational requirements [1], [6], dealing
with delayed and faulty observations [7], [8], increasing the
accuracy and robustness of feature initialization [4], [9], and
improving the estimator’s consistency [10], [11], [12].

Despite the significant progress in studying and fielding
VINS, most approaches have focused on processing visual
observations of point features. Although points are the sim-
plest form of geometric primitives and can be found in any
environment, tracking them can be especially challenging
when considering large changes in the viewing direction
and/or the lighting conditions. In contrast, edges and in
particular straight lines, which are omnipresent in structured
environments (e.g., indoors, urban areas, construction sites,
etc.), can be reliably extracted and tracked under a wide
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range of conditions [13], [14]. Additionally, robust edge
descriptors [15] have been developed for gradient edges cor-
responding to the occluding boundaries of a scene (e.g., wall
corners, stairwell edges, etc.), areas where point-tracking
methods often fail to provide reliable matches.

Furthermore, the problem of motion estimation based
on line observations1 has been well-studied [16], [20]. In
particular, given observations of 13 lines across three views,
the motion of the camera, up to scale, can be determined
in closed form [21], [22], while the impact of noise can
be reduced by processing line observations in batch [23],
[24] or filter form [25], [14]. Resolving the scale ambiguity,
however, and dealing with highly dynamic motions requires
fusing line observations with inertial measurements. To the
best of our knowledge, with the exception of [6] where
lines of known direction (parallel to the gravity) are used
for improving the roll and pitch estimates, the problem of
vision-aided inertial navigation using line observations has
not been investigated despite the potential gains in estimation
accuracy and robustness.

The work described in this paper, addresses this limitation
through the following three main contributions:
• We study the observability of the VINS using observa-

tions of a line and prove that it has five unobservable
degrees of freedom (dof): one corresponding to rotations
about the gravity vector, three concerning the global
translation of the IMU-camera and the line, and one
corresponding to motions of the camera along the line’s
direction. Furthermore, we show that this last direction
becomes observable when more than one non-parallel
lines are detected.

• We introduce an extended Kalman filter (EKF)-based
algorithm whose consistency is improved by ensuring
that no information is acquired along the unobservable
directions of its linearized system model. Moreover,
by concurrently processing line measurements across a
sliding window of camera poses [i.e,. by performing
visual-inertial odometry (VIO) instead of simultaneous
localization and mapping (SLAM)], the proposed esti-
mator’s computational complexity is only linear (instead
of quadratic) in the number of line features processed.

• We confirm the key findings of the observability analysis
and demonstrate the performance gains of the proposed
VIO algorithm experimentally.

1In this work, we make no assumptions about the direction or location
of lines. Methods for computing the attitude and/or position of a camera
using observations of known lines, are discussed in [16], [17], [18], [19]
and references therein.



The remainder of this paper is structured as follows. In
Sect. II, we present the system and measurement model based
on inertial and line measurements, respectively. In Sect. III,
we study the observability properties of the VINS based
on line observations. The key findings of this analysis are
leveraged in Sect. IV to improve the consistency of the EKF-
based estimation algorithm. Sect. V, presents experiments
that confirm the observability analysis and demonstrate the
performance improvement when using lines within VIO. Fi-
nally, Sect. VI summarizes the presented work and provides
an outline of future research directions.

II. VINS STATE AND MEASUREMENT MODELS

In what follows, we first present the system model used
for state and covariance propagation based on inertial mea-
surements (Sect. II-A), and then describe the measurement
model for processing straight-line observations (Sect. II-B).

A. IMU State and Covariance Propagation Model

The 16×1 IMU state vector is:

xR =
[

I q̄T
G bT

g
GvT

I bT
a

GpT
I

]T (1)

where I q̄G(t), GpI(t), and GvI(t) are the orientation, position,
and velocity of the IMU frame {I} with respect to the global
frame {G}, and bg(t) and ba(t) denote the gyroscope and
accelerometer biases, repsectively.

The system model describing the time evolution of the
state is (see [26]):

I ˙̄qG(t) = 1
2 Ω(Iω(t))I q̄G(t), GṗI(t) = GvI(t), Gv̇I(t) = Ga(t) (2)

ḃg(t) = nwg(t), ḃa(t) = nwa(t) (3)

where Iω and Ga are the rotational velocity and linear
acceleration, nwg and nwa(t) are the white-noise processes
driving the IMU biases, and

Ω(ω),

[
−bω×c ω

−ωT 0

]
, bω×c,

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

.

The gyroscope and accelerometer measurements are:

ωm(t) = I
ω(t)+bg(t)+ng(t) (4)

am(t) = C(I q̄G(t))(Ga(t)− Gg)+ba(t)+na(t). (5)

where C(q̄) is the rotation matrix corresponding to the
quaternion q̄, Gg is the gravitational acceleration expressed
in {G}, and ng(t) and na(t) are white-noise processes
contaminating the corresponding measurements.

Linearizing at the current estimates and applying the
expectation operator on both sides of (2)-(3), we obtain the
IMU state propagation model:

I ˙̄̂qG(t) =
1
2

Ω(I
ω̂(t))I ˆ̄qG(t), G ˙̂pI(t) = Gv̂I(t) (6)

G ˙̂vI(t) = CT (I ˆ̄qG(t)) â(t)+ Gg, ˙̂bg(t) = 03×1 , ˙̂ba(t) = 03×1

where â(t), am(t)− b̂a(t), and Iω̂(t), ωm(t)− b̂g(t).

By defining the 15×1 error-state vector as:2

x̃R =
[

Iδθ
T
G b̃T

g
GṽT

I b̃T
a

Gp̃T
I

]T
, (7)

the continuous-time IMU error-state equation becomes:

˙̃xR(t) = FR(t)x̃R(t)+GR(t)n(t) (8)

where FR is the error-state transition matrix and GR is the
input noise matrix, with

FR =


−bω̂(t)×c −I3 03 03 03

03 03 03 03 03
−CT (I ˆ̄qG(t))bâ(t)×c 03 03 −CT (I ˆ̄qG(t)) 03

03 03 03 03 03
03 03 I3 03 03


(9)

GR =


−I3 03 03 03
03 I3 03 03
03 03 −CT (I ˆ̄qG(t)) 03
03 03 03 I3
03 03 03 03


and n ,

[
nT

g nT
wg nT

a nT
wa
]T is the system noise with

autocorrelation E[n(t)nT (τ)] =QRδ (t−τ), where δ (.) is the
Dirac delta, and QR depends on the IMU noise characteristics
and is computed offline.

The discrete-time state transition matrix from time t1
to t, Φ(t, t1), is computed in analytical form [27] as
the solution to the matrix differential equation Φ̇(t, t1) =
FR (t)Φ(t, t1). As we show in [27], the structure of
Φ(tk+1, tk) = Φ(tk+1, t1)Φ(tk, t1)

−1 with Φ1 := Φ(t1, t1) =
I15, is given by:

Φk+1 = Φ(tk+1, tk) =


Φ11 Φ12 03 03 03
03 I3 03 03 03

Φ31 Φ32 I3 Φ34 03
03 03 03 I3 03

Φ51 Φ52 δ tI3 Φ54 I3

 . (10)

Finally, the discrete-time system noise covariance matrix
is computed as:

Qk =
∫ tk+1

tk
Φ(tk+1,τ)GRQRGT

RΦ
T (tk+1,τ)dτ.

B. Measurement Model for Straight Lines

1) Minimal (4 dof) Representation of Straight Lines in 3D:
Consider the line L in Fig. 1 and the coordinate frame {LG}
whose origin is the point on the line at minimum distance,
dLG , from {G}, its x-axis is aligned with the line’s direction,
L, and its z-axis points to the origin of {G}. Then, the line
L with respect to {G} can be represented by the parameter
vector:

xL =
[

Gq̄T
LG

dLG

]T
(11)

2For the IMU position, velocity, and biases, we use a standard additive
error model (i.e., x̃ = x− x̂ is the error in the estimate x̂ of a random
variable x). To ensure minimal representation for the covariance, we employ
a multiplicative attitude error model where the error between the quaternion
q̄ and its estimate ˆ̄q is the 3×1 angle-error vector, δθ , implicitly defined
by the error quaternion δ q̄ = q̄⊗ ˆ̄q−1 '

[ 1
2 δθ

T 1
]T , where δ q̄ describes

the small rotation that causes the true and estimated attitude to coincide.



Fig. 1: Geometrical depiction of the line parameterization
(Gq̄T

LG
, dLG ) employed in our analysis.

while its corresponding error vector is:

x̃L =
[

Gδθ
T
LG

d̃LG

]T
(12)

For simplicity, we consider the IMU frame of reference {I}
to coincide with the camera frame of reference3 and define
CL =C(Gq̄LG) and dL = dLG . The optical center of the camera
{I}, together with the 3D line L, defines a plane π in space.
The image sensor observes the 2D line l, i.e. the intersection
of the plane π and the image plane. The line detection
algorithm, returns a line l parameterized in polar form by
(φ ,ρ), which represent the orientation and magnitude of
the line’s normal vector OP in the 2D image plane (see
Fig. 1). A point p with homogeneous image coordinates
pT =

[
u v 1

]
, lies on the line if it satisfies the equality:

pT [cosφ sinφ −ρ
]
= 0 (13)

Let O denote the principal point of the image plane, I the
optical center of the camera, and u =

[
sinφ −cosφ 0

]T
be a (free) unit vector along the line on the image
plane. From Fig. 1, the vectors u and IP = IO + OP =[
ρ cosφ ρ sinφ 1

]T define the plane π . The vector n
perpendicular to the plane π , is:

n = IP×u =
[
cosφ sinφ −ρ

]T (14)

2) Geometric Constraints: We now derive two geometric
constraints relating the measurements of the lines on the
image plane with the robot’s attitude and position, in the
absence of noise. At time step tk, the sensor’s frame of
reference {I} is parameterized by Itk q̄G and GpItk

, and it
observes the line L, through its normal vector ntk . The
direction of line L expressed in the {I} frame lies on the
plane π , and hence satisfies the constraint:

ntk
T C(Itk q̄G)CLe1 = 0 (15)

3In practice, we perform IMU-camera extrinsic calibration following
the approach of [28].

where e1 =
[
1 0 0

]T . Similarly, for the point GpLG =

−CLdL
[
0 0 1

]T
= −CLdLe3 expressed in the {I}, we

have:

ntk
T C(Itk q̄G)(

GpLG −
GpItk

) = (16)

ntk
T C(Itk q̄G)(−CLdLe3− GpItk

) = 0

Stacking the two constraints together, we arrive at:

h(ntk ,xRtk
,xL)2×1

=

[
ntk

T C(Itk q̄G)CLe1
ntk

T C(Itk q̄G)(−CLdLe3− GpItk
)

]
= 02×1

(17)

where xRtk
is the vector xR at time step tk. In the next

section, we describe the measurement model induced by
these geometric constraints in the presence of camera sensor
noise.

3) Measurement model: In practice, the camera measures

ztk =
[
φ ρ

]T
+ξtk (18)

where ξtk follows a zero-mean Gaussian distribution
N (02×1,Rφρ) and models the noise, induced by the camera
sensor and the line extraction algorithm. The effect of ξtk on
h(ntk ,xRtk

,xL), denoted by wk can be approximated through
linearization as:

wk2×1 = A2×3B3×2ξtk (19)

where A = ∂h
∂ntk

and B =
[

∂ntk
∂φ

∂ntk
∂ρ

]
. Hence, wk can

be approximated by a zero-mean Gaussian distribution
N (02×1,Ztk) with Ztk = ABRφρ BT AT .

Using this noise parameterization, we arrive at the follow-
ing measurement model, that couples the measurement of
line L at time step tk, ntk , with the robot’s state vector, xRtk

,
and the line parameters xL:

zL,tk = h(ntk ,xRtk
,xL)+wk (20)

We now, linearize (20), with respect to the error state x̃R and
the line parameters error x̃L, which yields:

zL,tk − ẑL,tk = ∇hxR |x?R,x?L x̃R +∇hxL |x?R,x?L x̃L +wk = (21)

HRk |x?R,x?L x̃R +HL|x?R,x?L x̃L +wk (22)

with the corresponding Jacobians given by:

HRk |x?R,x?L =

[
nT

tk bC(Itk q̄G)CLe1×c 01×9 01×3
nT

tk bC(Itk q̄G)(−CLdLe3− G pIk )×c 01×9 −nT
tk C(Itk q̄G)

]
(23)

HLk|x?R ,x?L =

[
nT

tk C(Itk q̄G)bCLe1×c 0
nT

tk C(Itk q̄G)b−CLdLe3×c nT
tk C(Itk q̄G)(−CLe3)

]
. (24)

This, can be written in a compact form as:

HRk |x?R,x?L =

[
Hqk 1 01×9 01×3
Hqk 2 01×9 Hpk 2

]
, HL|x?R,x?L =

[
Hlk 1 01×3
Hlk 2 Hdk 2

]
.

(25)

where x?R and x?L denote the estimates at which the Jacobians
are computed.



III. OBSERVABILITY ANALYSIS

In this section, we study the observability properties of a
VINS system, that measures the same line L over m time
steps, denoted by t1, . . . tm. The system state consists of the
vector xR, that includes the IMU pose and linear velocity
together with the time-varying IMU biases (see Sec. II-A),
as well as the vector xL that describes the line parameters
(see Sec. II-B.1) with respect to the frame {G}. The time
evolution of the linearized system state between time steps
k and k+1 is described, by:

[
x̃Rtk+1

x̃L

]
=

[
Φk+1|x?Rk

015,4

04,15 I4,4

][
x̃Rtk
x̃L

]
(26)

where Φk+1|x?R is the system jacobian described in Sec. II-
A, evaluated at the point x?R. Note that the line coordinates’
error does not change in time since we observe a static scene.
Similarly, the linearized measurement model, is:

z̃k = HRk |x?Rk
,x?L x̃R +HL|x?Rk

,x?L x̃L (27)

Since we study the system’s observability properties, we set
n(t) = 0 and wk = 0 in (8) and (21), respectively. Therefore,
(26) and (27) represent the system in the absence of noise.
The k− th row of the observability matrix M, defined over
the time period t1, . . . tk, is given by:

Mk,: =
[
HRk |x?Rk

,x?LΦk|x?R HL|x?Rk
,x?L

]
(28)

Any vector belonging to the right nullspace of M, does
not affect our measurements and hence it corresponds to an
unobservable direction by any consistent estimator.

A. True Linearized System

Hereafter, we investigate the directions that span the left
nullspace of the observability matrix M under an “ideal”
linearization around teh true x?R and x?L, so as to derive an
analytical form for the unobservable directions of the system.
For simplicity, let us evaluate four rows of M, corresponding
to two measurements, at time steps t1 and tk, respectively.
The block rows, of the observability matrix, for t1 are:

M(x?R1
,x?L)1,: =

[
HR1 |x?R1

,x?L HL|x?R1
,x?L

]
(29)

while for tk, are given by:

M(x?Rk
,x?L)k,: =

[
Mk,1 Mk,2 Mk,3 Mk,4 Mk,5 Mk,6:7

]
(30)

Fig. 3: Unobservable directions N1 and N5, corresponding
to a rotation around the gravity vector and changes in the
velocity of the sensor platform, parallel to the line direction.

where:

Mk,1 =

[
nT

tk bC(Itk q̄G)CLe1×cΦk11
nT

tk bC(Itk q̄G)(−CLdLe3− GpIk)×cΦk11−nT
tk C(Itk q̄G)Φk51

]
(31)

Φk11 = C(Itk q̄It1
), Mk,3 =

[
01×3

−nT
tk C(Itk q̄G)(tk− t1)

]
(32)

Mk,5 =

[
01×3

−nT
tk C(Itk q̄G)(tk− t1)

]
(33)

Mk,6:7 = HL =

[
nT

tk C(Itk q̄G)bCLe1×c 0
nT

tk C(Itk q̄G)b−CLdLe3×c nT
tk C(Itk q̄G)(−CLe3)

]
(34)

Φk51 = bGpIt1
+ GvIt1

(tk− t1)−
1
2

Gg((tk− t1))2− GpItk
×cC(Gq̄It1

)

(35)

It can be verified, that at least the following five directions,
lie in the unobservable subspace of the system. Meaning that
rank(M)≤ 14.

N1 =



C(It1 q̄G)g
03×1

−bGvIt1
×cg

03×1
−bGpIt1

×cg
−g
0


=



N1q
03×1
N1v
03×1
N1p
N1l
0


,N2 =



03×1
03×1
03×1
03×1
CLe1
03×1

0


=



03×1
03×1
03×1
03×1
N2p
03×1

0


,

(36)

N3 =



03×1
03×1
03×1
03×1
−CLe3

03×1
1


=



03×1
03×1
03×1
03×1
N3p
03×1

1


,N4 =



03×1
03×1
03×1
03×1

CLdLe2
−CLe1

0


=



03×1
03×1
03×1
03×1
N4p
N4l
0


,N5 =



03×1
03×1
CLe1
03×1
03×1
03×1

0


(37)

Direction N1 corresponds to the rotation of the sensor
platform and the line around the gravity vector. N2...4 span
the space of all possible translations of the sensor platform
and the line together with respect to the global frame of
reference. The fifth direction N5 corresponds to a change of
the velocity of the sensor platform, parallel to the line L.

Consider now, the joint observability matrix, for the case
of observing two non-parallel lines L1, L2, which is M′ =[

ML1
ML2

]
, where ML1 and Ml2 are properly padded with zeros

since we are considered two lines. As shown in [29], it can be
easily verified that neither N5L1 , nor N5L2 lie in the nullspace
of M′, since L1 and L2 are non-parallel.



Fig. 2: Unobservable directions N2, N3 and N4. The combinations of these directions represent any translation of the sensor
platform together with the line.

B. Linearized System in Practice

We now examine, the observability matrix corresponding
to the linearized system, when the linearization points are
not ideal (i.e. they do not correspond to the true values
of ntk , xRtk

, xL). Interestingly, when we linearize around
the current state estimate, the directions N1, N2, and N5
erroneously become observable. This is easy to verify for
example, for N2. In the absence of noise, and with lineariza-
tion performed around the true states, the vector CLe1 is
always perpendicular to C(Itk q̄G)

T ntk , hence it always lies in
the right nullspace of the ideal observability matrix M. In the
presence of noise, however, no vector is always perpendicular
to every element of the set of vectors {C(Itk ˆ̄qG)

T ntk}, due
to the noise in the different estimates of Itk ˆ̄qG at different
time steps, and the fact that we never measure the true ntk ,
but a perturbed version of it (i.e. (18)). The same applies
for the rest of the directions. Moreover, if for two different
time steps, corresponding to two different block rows of
the observability matrix M, we linearize around different
estimates of the line coordinates xL, the directions N3,N4
also become observable. This leads to the conclusion that any
filter, applied to this problem, which employs linearization
around the current state estimate, violates the observability
properties of the underlying system and results to injection
of spurious information. We conjecture that this can cause
the EKF estimator to become inconsistent (i.e. being over-
confident for the accuracy of its estimates) and propose a
formal, yet simple, approach for addressing this issue in the
following section.

IV. APPLICATION TO VISION-AIDED INERTIAL
ODOMETRY: DESCRIPTION OF THE ALGORITHM

We employ the results of the observability analysis to
improve the consistency of the MSC-KF algorithm [1]
when modified for processing line observations. The main
advantage of the MSC-KF is that it processes all geometric
constraints induced by camera measurements over a finite
window of image frames, with computational complexity lin-
ear in the number of observed features. This is accomplished
through avoiding to include a map of the environment in the
state vector, but rather using all provided information for
localization purposes.

A. Structure of the state vector and variables of interest

At a given time step k, the filter tracks the 16×1 evolving
state, xR (see. (1)). For the purpose of using measurements
over a time window of the last M images, we employ
stochastic cloning [30] and keep in our state the cloned
sensor poses {xC =

[
Ik−M+i q̄T

G
GpT

Ik−M+i

]T}, i= 0 . . .(M−1).
Correspondingly, the covariance consists of the 15×15 block
of the evolving state, PRR, the 6M×6M block corresponding
to the cloned robot poses, PCC and their cross-correlations.
Hence, the covariance of the augmented state vector has the
following structure:

P =

[
PRR PRC

PRC
T PCC

]
(38)

Moreover, and in order to enforce the correct observ-
ability properties to the system, we maintain a copy of
the evolving part of the nullspace directions, which corre-
sponds to rotations around gravity, N1. Hence, we always
keep the current nullspace direction N1 and the set SN =
{N1(k−M+i)}i=0...(M−1), whose construction is described in
the next paragraph, as part of the state cloning and propaga-
tion procedures.

B. State Cloning

Upon the acquisition of a new image, we clone the
portions of the current state estimate and covariance, cor-
responding to the robot pose:

xC←

xC
I q̄G
GpI

 , P←
[

P P:,[1:3,13:15]
PT

:,[1:3,13:15] P[1:3,13:15],[1:3,13:15]

]
(39)

If this is the first time, that we record an image, we initial-
ize the nullspace direction N1, by direct evaluation of the
corresponding expression (36) at our current state estimate.
Afterwards, we add to the set SN the current direction N1.

SN←{SN, N1} (40)

C. State, Covariance and Nullspace Propagation

The moment we receive a new IMU measurement, we
propagate the evolving state xR (see Sec. II-A). We evaluate
now the new nullspace direction, N′1, by substituting the
propagated state vector xR in equation (36). Using the
analytical expressions [27] for the state transition matrix, we
evaluate Φ, at the propagated xR. We now seek a modified



Φ?, that adheres to the correct observability properties of the
system [11]. Since, only the first 15 rows of N1 change, we
denote u = N1[1:15] and w = N′1[1:15]. and solve the following
optimization problem:

min
Φ?
||Φ∗−Φ||2F , s.t. Φ

∗u = w (41)

where || · ||F denotes the Frobenius matrix norm and the
optimal solution is Φ? =Φ−(Φu−w)(uT u)−1uT . We update
the current nullspace direction N1←N′1 and use the modified
transition matrix, for covariance propagation.

PRR←Φ
?PRRΦ

?T +Qk (42)
PRC←Φ

?PRC (43)

D. Processing of Line Measurements

We now describe the update step for processing N tracks
of straight lines that initiate from image k −M + 1 and
reach at most, image k. The linearized measurement model
for line j, j = 0 . . .(N − 1), acquired at time step i,(i =
(k−M+1) . . .k), is (21):

z̃i
j = Hj

Cix̃Ci +Hj
Lix̃Lj +wi,j (44)

since, our measurements relate only to the cloned robot
poses, Hj

Ci =
[
Hj

Ri[1:2],[1:3] Hj
Ri[1:2],[13:15]

]
. For the eval-

uation of the Jacobians we need the parameters of the
line L, which we compute through triangulation. So as to
reduce the computational complexity, we approximate all
Zj

i , for all the measurements that we are about to process
by R′ ji = I2max(λmax({Zj

i}i=(k−M+1)...k, j=0...(N−1)))= I2σ ′2.
The process of retrieving σ ′2 has complexity at most O(NM).

1) Observability Constrained Measurement Jacobians:
The measurement Jacobians that adhere to the correct ob-
servability properties should satisfy:[

Hj
Ci Hj

Li

]
Θ N1i = 0,

[
Hj

Ci Hj
Li

]
Θ Nj

2...5 = 0 (45)

where Θ =

[
I3 03×9 03×7

07×3 07×9 I7

]
, N1i is the i− th element

of the set SN, and by Nj
2...5 we denote any of the directions

N2 . . .N5 evaluated at the parameters of line j. To acquire
the modified Hj?

C i and Hj?
L i, we re-arrange (45), to bring it

in the form:
min
A?
||A?−A||2F , s.t. A?u = w (46)

and arrive at the following expressions:

Hj?
pi 2 = Hj

pi 2−Hj
pi 2Nj

2p
(Nj

2p

T
Nj

2p
)−1Nj

2p

T
(47)

Hj?
di 2

=−Hj?
pi 2Nj

3p
(48)

Hj?
li 1

= Hj
li 1
−Hj

li 1
Nj

4l
(Nj

4l

T
Nj

4l
)−1Nj

4l

T
(49)

Hj?
li 2

= Hj
li 2
− (Hj

li 2
Nj

4l
+Hj?

pi 2Nj
4p
)(Nj

4l

T
Nj

4l
)−1Nj

4l

T
(50)

Hj?
qi 1 = Hj

qi 1− (Hj
qi 1Nj

1q
+Hj?

li 1
Nj

1l
)(Nj

1q

T
Nj

1q
)−1Nj

1q

T

(51)

Hj?
qi 2 = Hj

qi 2− (Hj
qi 2u−w)(uT u)−1uT (52)

u = Nj
1q
, w =−Hj?

pi 2Nj
1p
−Hj?

li 2
Nj

1l
(53)

2) Linearized constraint among all camera poses: By
stacking the measurements of line j over the time window
i = (k−M+1) . . .k, we arrive at:

z̃j = Hj?
C x̃C +Hj?

L x̃Lj +wj (54)

The matrix Hj?
L , has dimensions 2M × 4, and for M ≥ 3

it is full column rank. Hence, its left nullspace Uj, is of
dimensions 2M−4. By premultiplying (54) by UT

j , we arrive
at a measurement model, independent on the line parameters
error.

UT
j z̃j = UT

j Hj?
C x̃C +UT

j wj (55)

=⇒ z̃
′
j = Hj′

Cx̃C +w′j (56)

This key step in MSC-KF [1], defines a linearized constraint,
independent of the feature parameters, among all the camera
poses, that the line j was observed. By employing this
methodology on the line-based VINS framework, we exploit
all the geometric information induced by line L, without
the requirement of augmenting our state vector, with its pa-
rameters. Furthermore the computation of z̃′j, of dimensions

2M−4×1, and Hj′
C can be performed in O(M2) operations

using Givens rotations. Notice also, that the resulting noise
term UT

j wj has covariance σ ′2I2M−4.
3) Linear Complexity EKF Update: By collecting all z̃′j,

over all observed lines, j = 1 . . .N, we acquire:

z̃
′
N(2M−4)×1 = H

′
Cx̃C +w′j (57)

where the matrix H′C has size N(2M−4)×6M and hence is
in general tall, since the number of observed lines (generally)
exceeds the number of robot poses. As it is described in [3]
and [1] for the case of point features, we factorize H′C as:

H
′
C =

[
Q1 Q2

][Rupper
0

]
(58)

Where Rupper can have at most 6(M−1)−1 non-zero rows.
By performing Givens rotations on z̃′N(2M−4)×1 and H′C (see
[31], pg.227), we can form, our final measurement model:

r̃ = Rupperx̃C +w′′ (59)

The final prosess of projecting on
[
Q1 Q2

]T , has compu-
tational cost at most, O(NM2) [31], while the final residual
r̃ has dimension smaller or equal to 6(M − 1)− 1, and
w′′ follows N (0,σ ′2I6(M−1)−1). After constructing (59) we
perform a regular EKF update using the new measurement
Jacobian matrix Rupper.

We compute the Kalman gain, K =

PRupper
T
(
RupperPRupper

T +σ ′2I6(M−1)−1
)−1, and perform

state and covariance update, following the standard EKF
equations [32].

Finally, we marginalize the oldest cloned pose, by simply
removing xC(k−M+1) from xC, N1(k−M+1) from the set SN,
and marginalizing the corresponding rows and columns of
P.



Fig. 4: Comparison of the x-axis, y-axis and yaw uncertainties for the MSC-KF and the OC-MSC-KF. Note that the yaw
uncertainty for the MSC-KF erroneously decreases even though no absolute orientation is available to the filter. This also
causes an unjustifiably large decrease in the uncertainty along the x and y coordinates.

V. EXPERIMENTAL RESULTS

We validated the proposed line-based OC-MSC-KF on
real data. Our hardware testbed consists of a Point Grey
monochrome monocular camera with resolution 640x480
pixels and an InterSense NavChip IMU. Gradient edge
detection is performed using the Canny Edge detector [13]
and straight lines are extracted using OpenCV’s probabilistic
Hough transform [33]. For the purpose of tracking lines
between images, we employ the methodology described
in [34]. The trajectory (Fig. 5) has total length approximately
22∼m and covers one loop in an indoor office area, after
which the testbed was returned to its starting location, so
as to provide a quantitative characterization of the achieved
accuracy. Tracking of points and lines is performed over a
sliding window of 10 images.

We compared two filters, denoted by MSC-KF and OC-
MSC-KF, both of which were processing line and point
measurements concurrently. For the OC-MSC-KF, we pro-
cess lines as described in Sec. IV-D as well as point feature
measurements following [11], so to adhere to the correct ob-
servability properties of the system. Our, experimental results
validate our conjecture that the regular MSC-KF, erroneously
injects information along the unobservable directions (see
Fig. 4), which makes it overly confident. In contrast, the
OC-MSC-KF adheres to the correct observability properties
of the system, which is evident when considering its yaw and
position uncertainty (see Fig. 4). Finally, Table I, shows the
final position error for the filters considered when processing
points only or points and lines.

Filter Final Position Error(cm)
Regular (points only) MSC-KF 20
Regular (points and lines) MSC-KF 19
OC (points only) MSC-KF 18
OC (points and lines) MSC-KF 18

TABLE I: Final position error comparison

VI. CONCLUSION

In this paper, we studied the observability properties of
the VINS when it employs measurements to straight lines
over multiple time steps. We proved that for the case of
a single line, the system has five unobservable degrees.

Fig. 5: The 3d trajectory (up) used for the experimental
validation. The standard MSC-KF erroneously treats rota-
tions around gravity as observable, which results to a rotated
trajectory, as seen in the overhead view (down).



Additionally, we introduced an EKF-based algorithm, that
fuses visual observations of lines with inertial measurements,
and improved its consistency by ensuring that no information
is injected along unobservable directions. Furthermore, by
performing visual-inertial odometry (VIO) instead of SLAM,
the proposed algorithm achieves complexity only linear in
the number of measurements. Finally, we confirmed the key
findings of the line-based VINS observability analysis, and
demonstrated the performance of the proposed algorithm,
experimentally, using a MEMS-quality IMU and a miniature-
size camera. As part of our future work, we plan to extend
our approach to also include information about lines corre-
sponding to known directions and study the impact on the
filter’s consistency and accuracy.
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