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Abstract—In this paper, we study estimator inconsistency
in Vision-aided Inertial Navigation Systems (VINS) from a
standpoint of system observability. We postulate that a leading
cause of inconsistency is the gain of spurious information along
unobservable directions, resulting in smaller uncertainties, larger
estimation errors, and divergence. We develop an Observability-
Constrained VINS (OC-VINS), which explicitly enforces the
unobservable directions of the system, hence preventing spurious
information gain and reducing inconsistency. This framework
is applicable to several variants of the VINS problem such as
Visual Simultaneous Localization and Mapping (V-SLAM) as
well as visual-inertial odometry using the Multi-state Constraint
Kalman Filter (MSC-KF). Our analysis, along with the proposed
method for reducing inconsistency, are extensively validated with
simulation trials and real-world experimentation.

Index Terms—Vision-aided Inertial Navigation, Consistency,
Nonlinear Estimation, Observability analysis

I. INTRODUCTION

AVision-aided Inertial Navigation System (VINS) fuses
data from a camera and an Inertial Measurement Unit

(IMU) to track the six-degrees-of-freedom (d.o.f.) position and
orientation (pose) of a sensing platform. This sensor pair is
ideal since it combines complementary sensing capabilities [1].
For example, an IMU can accurately track dynamic motions
over short time durations, while visual data can be used to
estimate the pose displacement (up to scale) between consec-
utive views. Within the robotics community, VINS has gained
popularity as a method to address GPS-denied navigation for
several reasons. First, contrary to approaches which utilize
wheel odometry, VINS uses inertial sensing that can track
general 3D motions of a vehicle. Hence, it is applicable to a
variety of platforms such as aerial vehicles, legged robots, and
even humans, which are not constrained to move along pla-
nar trajectories. Second, unlike laser-scanner-based methods
that rely on the existence of structural planes [2] or height
invariance in semi-structured environments [3], using vision
as an exteroceptive sensor enables VINS methods to work in
unstructured areas such as collapsed buildings or outdoors.
Furthermore, both cameras and IMUs are light-weight and
have low power-consumption requirements, which has lead to
recent advances in onboard estimation for payload-constrained
platforms such as Micro Aerial Vehicles (MAVs) (e.g., [4]–
[7]).
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Numerous VINS approaches have been presented in the lit-
erature, including methods based on the Extended Kalman Fil-
ter (EKF) [8]–[11], the Unscented Kalman Filter (UKF) [12],
and Batch-least Squares (BLS) [13]. Non-parametric estima-
tors, such as the Particle Filter (PF), have also been applied
to visual odometry (e.g., [14], [15]). However, these have
focused on the simplified problem of estimating the pose
of a vehicle whose motion is constrained to 2D, since the
number of particles required is exponential in the size of
the state vector. Existing work has addressed a variety of
issues in VINS, such as reducing its computational cost [4],
[9], dealing with delayed observations [7], improving fault
detection by processing the visual and inertial measurements
in a loosely-coupled manner [5], increasing the accuracy of
feature initialization and estimation [16], and improving the
robustness to estimator initialization errors [17].

A fundamental issue that has not yet been addressed in
the literature is how estimator inconsistency affects VINS.
As defined in [18], a state estimator is consistent if the
estimation errors are zero-mean and have covariance smaller
than or equal to the one calculated by the filter. Estimator
inconsistency can have a devastating affect, particularly in
navigation applications, since both the current pose estimate
and its uncertainty, must be accurate in order to address
tasks that depend on the localization solution, such as path
planning. For nonlinear systems, several potential sources of
inconsistency exist (e.g., motion-model mismatch in target
tracking), and great care must be taken when designing an
estimator to improve consistency.

To the best of our knowledge, we provide the first report
on VINS inconsistency.1 We focus specifically on estimator
inconsistency due to spurious information gain which arises
from approximations incurred when applying linear estimation
tools to nonlinear problems (i.e., when using linearized esti-
mators such as the EKF). In summary, the main contributions
of this work are:

• We analyze the structure of the true and estimated sys-
tems and show that for the true system four unobservable
directions exist (i.e., 3-d.o.f. global translation and 1-
d.o.f. rotation about the gravity vector), while the system

1A poster describing the main results of this work appeared at [19].
Moreover, a short version of this paper detailing the OC-VINS framework
applied to V-SLAM will appear in [20], while the application to the MSC-
KF is accepted to appear in [21]. In comparison to [20] and [21], in this
paper we provide an extended theoretic analysis of the problem, including
an observability analysis of the linearized VINS system model, and present
extensive simulation and experimental results validating our approach.
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employed for estimation purposes has only three unob-
servable directions (3-d.o.f. global translation). Moreover,
we postulate that a main source of inconsistency in
VINS is spurious information gained when orientation
information is incorrectly projected along the direction
corresponding to rotations about the gravity vector.

• We propose a simple, yet powerful, estimator modifica-
tion that explicitly prohibits this incorrect information
gain. Our approach is general enough to be applied in
multiple VINS domains (e.g., V-SLAM and the MSC-
KF [22]) when linearized estimators, such as the EKF,
are used.

• We provide extensive evidence to demonstrate inconsis-
tency in standard VINS approaches as well as validate
our method with Monte-Carlo simulations to show that
it improves consistency and reduces estimation errors as
compared to standard VINS. In addition, we demonstrate
the performance of our approach experimentally using a
miniature IMU and a small-size camera.

The rest of this paper is organized as follows: We begin
with an overview of the related work (Sect. II). In Sect. III, we
describe the system and measurement models, followed by our
analysis of VINS inconsistency in Sect. IV. The proposed es-
timator modification is presented in Sect. V, and subsequently
validated both in simulations and experimentally (Sects. VI
and VII). Finally, we provide our concluding remarks and
outline our future research directions in Sect. VIII.

II. RELATED WORK

Until recently, little attention was paid to the effect that the
observability properties of a system can have on the consis-
tency of a linearized estimator, employed to solve a nonlinear
estimation problem. The work by Huang et al. [23]–[25] was
the first to identify this connection for several 2D localiza-
tion problems [i.e., Simultaneous Localization and Mapping
(SLAM), and Cooperative Localization (CL)]. The authors
showed that, for these problems, a mismatch exists between
the number of unobservable directions of the true nonlinear
system and the linearized system used for estimation purposes.
In particular, the estimated (linearized) system has one-fewer
unobservable direction than the true system, allowing the
estimator to surreptitiously gain spurious information along
the direction corresponding to global orientation (yaw). This
increases the estimation errors while erroneously reducing the
estimator uncertainty, and leads to inconsistency.

To date, no similar study exists linking the VINS ob-
servability properties to estimator inconsistency, despite the
fact that several authors have studied VINS observability
for various scenarios. For the task of IMU-camera extrinsic
calibration, Mirzaei and Roumeliotis [26], as well as, Kelly
and Sukhatme [27], have analyzed the system observability
using Lie derivatives [28] to determine when the IMU-camera
transformation is observable. Jones and Soatto [16] studied
VINS observability by examining the indistinguishable trajec-
tories of the system [29] under different sensor configurations
(i.e., inertial only, vision only, vision and inertial). Recently,
Martinelli [30] utilized the concept of continuous symmetries

Fig. 1. Sensor platform comprising an IMU and a camera. {I q̄G,GpI} are
the quaternion of orientation and position vector describing the pose of the
sensing frame {I} with respect to the global frame {G}. The i-th feature’s
3D coordinates are denoted as Gfi, and Ifi, with respect to {G} and {I},
respectively.

to show that the IMU biases, 3D velocity, and absolute roll
and pitch angles are observable for VINS.

In this work, we study the observability properties of the
ideal linearized VINS model (i.e., the one whose Jacobians are
evaluated at the true states), and show it has four unobservable
d.o.f., corresponding to three-d.o.f. global translations and one-
d.o.f. global rotation about the gravity vector. Moreover, we
show that when the estimated states are used for evaluating
the Jacobians, as is the case for the EKF, the number of
unobservable directions is reduced by one. In particular, the
global rotation about the gravity vector becomes (erroneously)
observable, allowing the estimator to gain spurious informa-
tion and leading to inconsistency. These results confirm the
findings of [16] and [30] using a different approach (i.e.,
the observability matrix), while additionally specifying the
exact mathematical structure of the unobservable directions
necessary for assessing the EKF’s inconsistency.2

To address this problem, we introduce a modification of the
VINS EKF where its estimated Jacobians are updated so as to
ensure that the number of unobservable directions is the same
as when using the true Jacobians. In this manner, the global
rotation about the gravity vector remains unobservable (as it
should) and the consistency of the VINS EKF is significantly
improved.

III. VINS ESTIMATOR DESCRIPTION

We begin with an overview of the propagation and measure-
ment models which govern the VINS. In particular, we employ
an EKF for fusing the camera and IMU measurements to esti-
mate the state of the system including the pose, velocity, and
IMU biases, as well as the 3D positions of visual landmarks
observed by the camera. We operate in a previously unknown
environment and utilize two types of visual features in our
VINS framework. The first are opportunistic features (OFs)
that can be accurately and efficiently tracked across short
image sequences (e.g., using KLT [31]), but are not visually
distinctive enough to be efficiently recognized when revisiting
an area. OFs can be efficiently used to estimate the motion

2The analysis in [30] addresses the special case with one known feature
at the origin, which in contrast to our approach, cannot be used to determine
the nullspace directions when multiple features are considered.
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of the camera over short time horizons (i.e., using the MSC-
KF), but they are not included in the state vector. The second
are Persistent Features (PFs), which are typically much fewer
in number, and can be reliably redetected when revisiting an
area (e.g., SIFT keys [32]). The 3D coordinates of the PFs are
estimated to construct a map of the area.

A. System State and Propagation Model

The EKF estimates the 3D IMU pose and linear velocity
together with the time-varying IMU biases and a map of
visual features (see Fig. 1). In particular, the filter state is
the (16 + 3N)× 1 vector:

x =
[
I q̄T

G bT
g

GvT
I bT

a
GpT

I | GfT
1 · · · GfT

N

]T
=
[
xT
s | xT

f

]T
, (1)

where xs(t) is the 16×1 sensor platform state, and xf (t) is the
3N × 1 state of the feature map. The first component of the
sensor platform state is I q̄G(t) which is the unit quaternion
representing the orientation of the global frame {G} in the
IMU frame, {I}, at time t. The frame {I} is attached
to the IMU, while {G} is a local-vertical reference frame
whose origin coincides with the initial IMU position. The
sensor platform state also includes the position and velocity
of {I} in {G}, denoted by the 3 × 1 vectors GpI(t) and
GvI(t), respectively. The remaining components are the biases,
bg(t) and ba(t), affecting the gyroscope and accelerometer
measurements, which are modeled as random-walk processes
driven by the zero-mean, white Gaussian noise nwg(t) and
nwa(t), respectively.

The map state, xf , comprises the 3D coordinates of N PFs,
Gfi, i = 1, . . . , N , and grows as new PFs are observed [33].
In contrast, we do not store OFs in the map. Instead, all OFs
are processed and marginalized on-the-fly using the MSC-KF
approach [22] (see Sect. III-B). With the state of the system
now defined, we turn our attention to the continuous-time
model which governs the state of the system.

1) Continuous-time model: The system model describing
the time evolution of the state is (see [34], [35]):

I ˙̄qG(t) =
1

2
Ω(ω(t))I q̄G(t) (2)

GṗI(t) = GvI(t) (3)
Gv̇I(t) = Ga(t) (4)

ḃg(t) = nwg(t) (5)

ḃa(t) = nwa(t) (6)
Gḟi(t) = 03×1 , i = 1, . . . , N. (7)

In these expressions, ω(t) = [ω1(t) ω2(t) ω3(t)]T is the
rotational velocity of the IMU, expressed in {I}, Ga is the
IMU acceleration expressed in {G}, and

Ω(ω) =

[
−bω×c ω
−ωT 0

]
, bω×c ,

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

The gyroscope and accelerometer measurements, ωm and am,
are modeled as

ωm(t) = ω(t) + bg(t) + ng(t) (8)
am(t) = C(I q̄G(t)) (Ga(t)− Gg) + ba(t) + na(t), (9)

where ng and na are zero-mean, white Gaussian noise pro-
cesses, and Gg is the gravitational acceleration. The matrix
C(q̄) is the rotation matrix corresponding to q̄. The PFs
belong to the static scene, thus, their time derivatives are zero
[see (7)].

Linearizing at the current estimates and applying the ex-
pectation operator on both sides of (2)-(7), we obtain the state
estimate propagation model

I ˙̄̂qG(t) =
1

2
Ω(ω̂(t))I ˆ̄qG(t) (10)

G ˙̂pI(t) = Gv̂I(t) (11)
G ˙̂vI(t) = CT (I ˆ̄qG(t)) â(t) + Gg (12)

˙̂
bg(t) = 03×1 (13)
˙̂
ba(t) = 03×1 (14)

G˙̂
fi (t) = 03×1 , i = 1, . . . , N, (15)

where â(t)=am(t)−b̂a(t), and ω̂(t)=ωm(t)−b̂g(t).
The (15 + 3N)× 1 error-state vector is defined as

x̃ =
[

IδθT

G b̃T
g

GṽT
I b̃T

a
Gp̃T

I | Gf̃T
1 · · · Gf̃T

N

]T
=
[
x̃T
s | x̃T

f

]T
, (16)

where x̃s(t) is the 15 × 1 error state corresponding to the
sensing platform, and x̃f (t) is the 3N × 1 error state of the
map. For the IMU position, velocity, biases, and the map, an
additive error model is utilized (i.e., x̃ = x− x̂ is the error in
the estimate x̂ of a quantity x). However, for the quaternion
we employ a multiplicative error model [35]. Specifically,
the error between the quaternion q̄ and its estimate ˆ̄q is the
3 × 1 angle-error vector, δθ, implicitly defined by the error
quaternion

δq̄ = q̄ ⊗ ˆ̄q−1 '
[

1
2δθ

T 1
]T
, (17)

where δq̄ describes the small rotation that causes the true and
estimated attitude to coincide. This allows us to represent the
attitude uncertainty by the 3×3 covariance matrix E[δθδθT ],
which is a minimal representation.

The linearized continuous-time error-state equation is

˙̃x =

[
Fs 015×3N

03N×15 03N

]
x̃ +

[
Gs

03N×12

]
n

= F x̃ + G n , (18)

where 03N denotes the 3N × 3N matrix of zeros. Here, n is
the vector comprising the IMU measurement noise terms as
well as the process noise driving the IMU biases, i.e.,

n =
[
nT
g nT

wg nT
a nT

wa

]T
(19)

while Fs is the continuous-time error-state transition matrix
corresponding to the sensor platform state, and Gs is the
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continuous-time input noise matrix, i.e.,

Fs=


−bω̂×c −I3 03 03 03

03 03 03 03 03

−CT (I ˆ̄qG)bâ×c 03 03 −CT (I ˆ̄qG) 03

03 03 03 03 03

03 03 I3 03 03

 (20)

Gs=


−I3 03 03 03

03 I3 03 03

03 03 −CT (I ˆ̄qG) 03

03 03 03 I3

03 03 03 03

 (21)

where I3 is the 3 × 3 identity matrix. The system noise is
modeled as a zero-mean white Gaussian process with auto-
correlation E[n(t)nT (τ)] = Qcδ(t − τ), where Qc depends
on the IMU noise characteristics and is computed off-line [35].

2) Discrete-time implementation: The IMU signals ωm and
am are sampled at a constant rate 1/δt, where δt , tk+1 − tk.
Every time a new IMU measurement is received, the state
estimate is propagated using 4th-order Runge-Kutta numerical
integration of (10)–(15). In order to derive the covariance prop-
agation equation, we compute the discrete-time state transition
matrix, Φk, and the discrete-time system noise covariance
matrix, Qk, as

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

F(τ)dτ

)
(22)

Qk =

∫ tk+1

tk

Φ(tk+1, τ)GQcG
TΦT (tk+1, τ)dτ.

The covariance is then propagated as

Pk+1|k = ΦkPk|kΦ
T

k + Qk. (23)

We note that in the above expression, and throughout the
paper, Pi|j and x̂i|j denote the estimates of the error-state
covariance and state, respectively, at time-step i computed
using measurements up to time-step j.

B. Measurement Update Model

As the camera-IMU platform moves, the camera observes
both opportunistic and persistent visual features. These mea-
surements are utilized to concurrently estimate the motion of
the sensing platform and the map of PFs. We distinguish three
types of filter updates: (i) PF updates of features already in
the map, (ii) initialization of PFs not yet in the map, and (iii)
OF updates. We first describe the feature measurement model,
and subsequently detail how it is employed in each case.

To simplify the discussion, we consider the observation of
a single PF point fi. The camera measures zi, which is the
perspective projection of the 3D point Ifi, expressed in the

current IMU frame {I}, onto the image plane3, i.e.,

zi =
1

z

[
x
y

]
+ ηi (24)

where

xy
z

 = Ifi = C (IqG) (Gfi − GpI) . (25)

The measurement noise, ηi, is modeled as zero mean, white
Gaussian with covariance Ri. The linearized error model is

z̃i = zi − ẑi ' Hix̃ + ηi (26)

where ẑ is the expected measurement computed by evaluat-
ing (25) at the current state estimate, and the measurement
Jacobian, Hi, is

Hi = Hc

[
Hq̄ 03×9 Hp | 03 · · ·Hfi · · ·03

]
(27)

with

Hc =
1

z2

[
z 0 −x
0 z −y

]
(28)

Hq̄ = bC (I q̄G) (Gfi − GpI) ×c (29)
Hp = −C (I q̄G) (30)
Hfi = C (I q̄G) . (31)

evaluated at the current state estimate. Here, Hc, is the
Jacobian of the camera’s perspective projection with respect
to Ifi, while Hq̄ , Hp, and Hfi , are the Jacobians of Ifi with
respect to IqG, GpI , and Gfi.

This measurement model is utilized in each of the three
update methods. For PFs that are already in the map, we
directly apply the measurement model (25)-(27) to update the
filter. In particular, we compute the measurement residual ri,
along with its covariance Si, and the Kalman gain Ki, i.e.,

ri = zi − ẑi (32)
Si = HiPk+1|kH

T

i + Ri (33)

Ki = Pk+1|kH
T

i S−1
i . (34)

and update the EKF state and covariance as

x̂k+1|k+1 = x̂k+1|k + Kiri (35)

Pk+1|k+1 =Pk+1|k−Pk+1|kH
T

i S−1
i HiPk+1|k (36)

For previously unseen (new) PFs, we compute an initial esti-
mate, along with covariance and cross-correlations by solving
a bundle-adjustment problem over a short time window [37]
(see Appendix A). Finally, for OFs, we employ the MSC-
KF to impose an efficient (linear complexity) pose update
constraining all the views from which a set of features was
seen. For a detailed description of the MSC-KF algorithm, we
refer the interested reader to [22].

3Without loss of generality, we express the image measurement in normal-
ized pixel coordinates, and consider the camera frame to be coincident with
the IMU. In practice, we perform both intrinsic and extrinsic IMU-camera
calibration off-line [26], [36].
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IV. VINS OBSERVABILITY ANALYSIS

In this section, we examine the observability properties
of the linearized VINS model. Specifically, we first study
and analytically determine the four unobservable directions
of the ideal linearized VINS (i.e., the system whose Jacobians
are evaluated at the true states). Subsequently, we show that
the linearized VINS used by the EKF, whose Jacobians are
evaluated using the current state estimates, has only three
unobservable directions (i.e., the ones corresponding to global
translation), while the one corresponding to global rotation
about the gravity vector becomes (erroneously) observable.
The key findings of this analysis are then employed in Sect. V
for improving the consistency of the EKF-based VINS.

A. Observability analysis of the ideal linearized VINS model

The Observability matrix [38] is defined as a function of
the linearized measurement model, H, and the discrete-time
state transition matrix, Φ, which are in turn functions of the
linearization point, x?, i.e.,

M (x?) =


H1

H2Φ2,1

...
HkΦk,1

 (37)

where Φk,1 = Φk−1 · · ·Φ1 is the state transition matrix from
time step 1 to k. We start by first considering the case where
we use the true state values as linearization point x? for
evaluating the system and measurement Jacobians. Moreover,
and in order to preserve the clarity of presentation, we focus
on the case where only a single feature point is visible.4 The
first block-row of M is written as [see (27)] (for k = 1):

Hk = Ψ1

[
Ψ2 03 03 03 −I3 I3

]
(38)

where

Ψ1 = Hc,kC (Ik q̄G) (39)

Ψ2 = bGf − GpIk
×cC (Ik q̄G)

T (40)

and Ik q̄G, denotes the rotation of {G} with respect to frame
{Ik} at time step k = 1.

To compute the remaining block rows of the observability
matrix, we require Φk,1, which we determine analytically by
solving the matrix differential equation [33]

Φ̇k,1 = FΦk,1, i.c. Φ1,1 = I18. (41)

with F detailed in (18). The solution has the following
structure

Φk,1 =


Φ11 Φ12 03 03 03 03

03 I3 03 03 03 03

Φ31 Φ32 I3 Φ34 03 03

03 03 03 I3 03 03

Φ51 Φ52 δt(k − 1)I3 Φ54 I3 03

03 03 03 03 03 I3

 (42)

4Note that the case of multiple features can be easily captured by our
analysis by appropriately augmenting the corresponding matrices. Also, the
derived nullspace directions remain the same, in terms of the number, with an
identity matrix (−bGfi×cGg) appended to the ones corresponding to global
translation (rotation) for each new feature [see also (56)].

where among the different block elements Φij , we list below
the ones necessary in our analysis and refer to [33] for the
remaining ones, as well as the details of the approach followed
for solving (41):
Φ11 = C

(
Ik q̄I1

)
(43)

Φ31 = −b
(
G

vIk
− G

vI1

)
+

G
g (k − 1) δt×cC

(
G
q̄I1

)
(44)

Φ51 = bGpI1
+

G
vI1

(k − 1)δt−
1

2

G
g((k − 1)δt)

2 − G
pIk
×cC(

G
q̄I1 )

(45)

By multiplying (38) at time-step k and (42) we obtain the
k-th block row of M, for k > 1:

Mk = HkΦk,1

= Γ1

[
Γ2 Γ3 −δt(k − 1)I3 Γ4 −I3 I3

]
(46)

where

Γ1 = Hc,kC (Ik q̄G) (47)

Γ2 = bGf − GpI1 − GvI1 (k − 1) δt+
1

2
Gg ((k − 1) δt)

2 ×c

·C (I1 q̄G)
T (48)

Γ3 = bGf − GpIk
×cCT (Ik q̄G)Φ12 −Φ52 (49)

Γ4 = −Φ54 (50)

At this point, we state the main result of our analysis

Theorem 1. The right nullspace N1 of the observability
matrix M(x) [see (37)] of the linearized VINS

M(x)N1 = 0 (51)

spans the following four directions:

N1 =


03 C (I1 q̄G) Gg
03 03

03 −bGvI1
×cGg

03 03

I3 −bGpI1
×cGg

I3 −bGf ×cGg

 =
[
Nt,1 | Nr,1

]
. (52)

Proof: The fact that N1 is indeed the right nullspace of
M(x) can be easily verified by multiplying each block row of
M [see (46)] with Nt,1 and Nr,1 in (52). Since MkNt,1 = 0
and MkNr,1 = 0, it follows that MN1 = 0.

Remark 1. The 18×3 block column Nt,1 corresponds to global
translations, i.e., translating both the sensing platform and the
landmark by the same amount.

Remark 2. The 18 × 1 column Nr,1 corresponds to global
rotations of the sensing platform and the landmark about the
gravity vector.

B. Observability analysis of the EKF linearized VINS model

Ideally, any VINS estimator should employ a linearized
system with an unobservable subspace that matches the true
unobservable directions (52), both in number and structure.
However, when linearizing about the estimated state x̂, M̂ =
M (x̂) gains rank due to errors in the state estimates across
time [33]. In particular, the last two block columns of Mk

in (46) remain the same when computing M̂k = ĤkΦ̂k,1 from
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Algorithm 1 OC-VINS Algorithm Overview
Initialization: Compute initial nullspace from (55)
while running do

Propagation:
Integrate state equations [see (10)-(15)]
Compute nullspace at current time-step from (56)
Compute Φk from (22)
Modify Φk using (60)-(62)
Propagate covariance [see (23)]

Update:
for all observed features do

Compute measurement Jacobian from (27)
Modify H using (69)-(74)
Apply filter update [see (32)-(36)]

end for
New landmark initialization:
for all new PFs observed do

Initialize Gf̂i, using approach in Appendix A
Create nullspace block, Nfi , for Gf̂i [see (52)]
Augment Nk with the new sub-block Nfi

end for
end while

the Jacobians Ĥk and Φ̂k,1 evaluated at the current state esti-
mates and thus the global translation remains unobservable. In
contrast, the rest of the block elements of (46), and specifically
Γ2 do not adhere to the structure shown in (48) and as a result
the rank of the observability matrix M̂ corresponding to the
EKF linearized VINS model increases by one. In particular, it
can be easily verified that the right nullspace N̂1 of M̂ does
not contain the direction corresponding to the global rotation
about the g vector, which becomes (erroneously) observable.
We conjecture that this causes the EKF estimator to become
inconsistent and propose a formal approach for addressing this
issue in the following section.

V. OC-VINS: ALGORITHM DESCRIPTION

In order to address the EKF VINS inconsistency problem,
we must ensure that (51) is satisfied for every block row of
M̂ when the state estimates are used for computing Ĥk, and
Φ̂k,1, ∀k > 0, i.e., we must ensure that

ĤkΦ̂k,1N̂1 = 0, ∀k > 0 (53)

One way to enforce this is by requiring that at each time step,
Φ̂k and Ĥk satisfy the following constraints:

N̂k+1 = Φ̂kN̂k (54a)

ĤkN̂k = 0, ∀k > 0 (54b)

where N̂k, k > 0 is computed analytically (see (56) and [33]).
This can be accomplished by appropriately modifying Φ̂k and
Ĥk.

In particular, rather than changing the linearization points
explicitly (e.g., as in [23]), we maintain the nullspace, N̂k,
at each time step, and use it to enforce the unobservable
directions. This has the benefit of allowing us to linearize
with the most accurate state estimates, hence reducing the

linearization error, while still explicitly adhering to the system
observability properties.

A. Nullspace initialization

The initial nullspace is analytically defined as [see (52)]:

N̂1 =


03 C

(
I ˆ̄qG,0|0

)
Gg

03 03

03 −bGv̂I,0|0×cGg
03 03

I3 −bGp̂I,0|0×cGg

I3 −bGf̂1,0|0×cGg

 . (55)

At subsequent time steps, the nullspace is augmented to
include sub-blocks corresponding to each new PF in the filter
state, i.e.,

N̂k =



03 C
(
I ˆ̄qG,k|k−1

)
Gg

03 03

03 −bGv̂I,k|k−1×cGg
03 03

I3 −bGp̂I,k|k−1×cGg

I3 −bGf̂1,k|k−`×cGg
...

...
I3 −bGf̂N,k|k−`′ ×cGg


. (56)

where the sub-blocks N̂fi =
[
I3 −bGf̂i,k|k−`×cGg

]
, are the

rows corresponding to the i-th feature in the map, which are
a function of the feature estimate at the time-step when it was
initialized (k − `).

B. Modification of the state transition matrix Φ

During the covariance propagation step, we must ensure
that N̂k+1 = Φ̂kN̂k. We note that the constraint on N̂t,k is
automatically satisfied due to the structure of Φ̂k (see [33]), so
we focus on N̂r,k. Specifically, we rewrite (54a) element-wise
as:5

N̂r,k+1 = Φ̂kN̂r,k ⇒ (57)
C
(
I ˆ̄qG,k+1|k

)
Gg

03

−bGv̂I,k+1|k ×cGg
03

−bGp̂I,k+1|k ×cGg

 =


Φ̂11 Φ̂12 03 03 03

03 I3 03 03 03

Φ̂31 Φ̂32 I3 Φ̂34 03

03 03 03 I3 03

Φ̂51 Φ̂52 δtI3 Φ̂54 I3



·


C
(
I ˆ̄qG,k|k−1

)
Gg

03

−bGv̂I,k|k−1×cGg
03

−bGp̂I,k|k−1×cGg

 (58)

and collect the constraints resulting from each block row of
the above vector. Specifically, from the first block row we have

C
(
I ˆ̄qG,k+1|k

)
Gg = Φ̂11C

(
I ˆ̄qG,k|k−1

)
Gg (59)

⇒ Φ̂
?

11 = C
(

I,k+1|k ˆ̄qI,k|k−1

)
. (60)

5Note that due to the structure of the matrices Φk [see (42)] and Nr,k

[see (56)], we only need to consider the first five block elements of (57) while
the equality for the remaining ones, i.e., the elements corresponding to the
features, are automatically satisfied.
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The requirements for the third and fifth block rows are

Φ̂31C
(
I ˆ̄qG,k|k−1

)
Gg = bGv̂I,k|k−1 − Gv̂I,k+1|k ×cGg (61)

Φ̂51C
(
I ˆ̄qG,k|k−1

)
Gg = bδtGv̂I,k|k−1 − Gp̂I,k+1|k ×cGg

(62)

both of which are in the form Au = w, where u and w are
nullspace vector elements that are fixed. In order to ensure
that (61) and (62) are satisfied, we seek to find a perturbed
A?, for A = Φ31 and A = Φ51 that fulfills the constraint. To
compute the minimum perturbation, A?, of A, we formulate
the following minimization problem

min
A?
||A? −A||2F , s.t. A?u = w (63)

where || · ||F denotes the Frobenius matrix norm. After
employing the method of Lagrange multipliers, and solving
the corresponding KKT optimality conditions, the optimal A?

that fulfills (63) is

A? = A− (Au−w)(uTu)−1uT . (64)

Once we have computed the modified Φ̂
?

11 from (60), and
Φ̂
?

31 and Φ̂
?

51 from (63) and (64), we update the corresponding
elements of Φ̂k, and proceed with the covariance propagation
(see Sect. III-A).

C. Modification of H

During each update step, we seek to satisfy ĤkN̂k = 0
[see (54b)]. In turn, this means that

ĤkN̂t,k = 0 (65)

ĤkN̂r,k = 0 (66)

must both hold. Expressing (65) for a single point we have
[see (27) and (52)]

Ĥc

[
Ĥq̄ 03×9 Ĥp | Ĥf

]


03

03

03

03

I3

I3

 = 0 (67)

which is satisfied automatically, since Ĥp = −Ĥf [see (30)
and (31)]. Hence, the nullspace direction corresponding to
translation is not violated.

Expanding the second constraint (66), we have

Ĥc

[
Ĥq̄ 03×9 Ĥp | Ĥf

]


C
(
I ˆ̄qG,k|k−1

)
Gg

03

−bGv̂I,k|k−1×cGg
03

−bGp̂I,k|k−1×cGg

−bGf̂k|k−`×cGg

 = 0

(68)

Since Ĥp = −Ĥf , (68) is equivalent to satisfying the
following relationship[

ĤcĤq̄ ĤcĤp

] [ C
(
I ˆ̄qG,k|k−1

)
Gg

bGf̂k|k−` − Gp̂I,k|k−1×cGg

]
= 0[

Ĥcq̄ Ĥcp

] [ C
(
I ˆ̄qG,k|k−1

)
Gg

bGf̂k|k−` − Gp̂I,k|k−1×cGg

]
= 0 (69)

where we have implicitly defined Ĥcq̄ and Ĥcp as elements
of the Jacobian. This is a constraint of the form Au = 0,
where u is a function of the nullspace elements, and hence is
fixed, while A comprises block elements of the measurement
Jacobian. We compute the optimal A? that satisfies (69)
using (63) and (64). By direct application of (63), for

A =
[
Ĥcq̄ Ĥcp

]
u =

[
C
(
I ˆ̄qG,k|k−1

)
Gg

bGf̂k|k−` − Gp̂I,k|k−1×cGg

]
w = 0 (70)

A? is computed as

A? = A−Au(uTu)−1uT (71)

After computing the optimal A?, we recover the Jacobian
elements as

Ĥ?
cq̄ = A?

1:2,1:3 (72)

Ĥ?
cp = A?

1:2,4:6 (73)

Ĥ?
cf = −Ĥ?

cp (74)

where the subscripts (i:j, m:n) denote the submatrix spanning
rows i to j, and columns m to n. Hence the modified observa-
tion matrix is

Ĥ?
k =

[
Ĥ?
cq̄ 02×9 Ĥ?

cp Ĥ?
cf

]
(75)

Having computed the modified measurement Jacobian, we
proceed with the filter update as described in Sect. III-B. By
following this process, we ensure that the EKF does not gain
information along the unobservable directions of the system.
An overview of the OC-VINS modified EKF estimator is
presented in Alg. 1.

VI. SIMULATIONS

We conducted Monte-Carlo simulations to evaluate the
impact of the proposed Observability-Constrained VINS (OC-
VINS) method on estimator consistency. We applied the pro-
posed methodology to two VINS systems: (i) Visual Simulta-
neous Localization and Mapping (V-SLAM) (see Sect. VI-A),
and (ii) the Multi-state Constraint Kalman Filter (MSC-KF),
which performs visual-inertial localization without construct-
ing a map (see Sect. VI-B).

A. Simulation 1: Application of the proposed framework to
V-SLAM

In this section, we present the results of applying our pro-
posed OC-VINS to V-SLAM, which we term OC-V-SLAM.
We compared its performance to the standard V-SLAM (Std-V-
SLAM), as well as the ideal V-SLAM that linearizes about the
true state6. Specifically, we computed the Root Mean Squared
Error (RMSE) and Normalized Estimation Error Squared
(NEES) over 20 trials in which the camera-IMU platform
traversed a circular trajectory of radius 5 m at an average

6Since the ideal V-SLAM has access to the true state, it is not realizable
in practice, but we include it here as a baseline comparison.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Simulation 1: The RMSE and NEES errors for orientation (a)-(b) and position (d)-(e) plotted for all three filters, averaged per time step over 20
Monte Carlo trials. (c) Camera-IMU trajectory and 3D features. (f) Error and 3σ bounds for the rotation about the gravity vector, plotted for the first 100 sec
of a representative run.

velocity of 60 cm/s. The camera7 observed visual features
distributed on the interior wall of a circumscribing cylinder
with radius 6 m and height 2 m (see Fig. 2c). The effect of
inconsistency during a single run is depicted in Fig. 2f. The
error and corresponding 3σ bounds of uncertainty are plotted
for the rotation about the gravity vector. It is clear that the Std-
V-SLAM gains spurious information, hence reducing its 3σ
bounds of uncertainty, while the Ideal-V-SLAM and the OC-
V-SLAM do not. The Std-V-SLAM becomes inconsistent on
this run as the orientation errors fall outside of the uncertainty
bounds, while both the Ideal-V-SLAM and the OC-V-SLAM
remain consistent. Figure 2 also displays the RMSE and NEES
plots, in which we observe that the OC-V-SLAM attains
orientation accuracy and consistency levels similar to the
Ideal-V-SLAM, while significantly outperforming the Std-V-
SLAM. Similarly, the OC-V-SLAM obtains better positioning
accuracy compared to the Std-V-SLAM.

B. Simulation 2: Application of the proposed framework to
MSC-KF

We applied our OC-VINS methodology to the MSC-KF,
which we term the OC-MSC-KF. In the MSC-KF framework,
all the measurements to a given OF are incorporated during
a single update step of the filter, after which each OF is
marginalized. Hence, in the OC-MSC-KF, we do not maintain
the sub-blocks of the nullspace corresponding to the features
[i.e., Nfi , i = 1, . . . , N , see (56)]. Instead, we propagate
forward only the portion of the nullspace corresponding to
the sensor platform state, and we form the feature nullspace
block for each feature, only when it is processed in an update.

We conducted Monte-Carlo simulations to evaluate the
consistency of the proposed method applied to the MSC-
KF [11]. Specifically, we compared the standard MSC-KF

7The camera had 45 deg field of view, with σpx = 1px, while the IMU
was modeled after MEMS quality sensors.

(Std-MSC-KF), with the Observability-Constrained MSC-KF
(OC-MSC-KF), which is obtained by applying the methodol-
ogy described in Sect. V, as well as the Ideal-MSC-KF, whose
Jacobians are linearized at the true states, which we use as a
benchmark. We evaluated the RMSE and NEES over 30 trials
(see Fig. 3) in which the camera-IMU platform traversed a
circular trajectory of radius 5 m at an average speed of 60 cm/s,
and observed 50 randomly distributed features per image. As
evident, the OC-MSC-KF outperforms the Std-MSC-KF and
attains performance almost indistinguishable from the Ideal-
MSC-KF in terms of RMSE and NEES.

VII. EXPERIMENTAL RESULTS

The proposed OC-VINS framework has been validated
experimentally and compared with standard VINS approaches.
Specifically, we evaluated the performance of OC-V-SLAM
(Sect. VII-B) and OC-MSC-KF (Sect. VII-C and Sect. VII-D)
on both indoor and outdoor datasets. In our experimental
setup, we utilized a light-weight sensing platform comprised
of an InterSense NavChip IMU and a PointGrey Chameleon
camera (see Fig. 4). During the indoor experimental tests
(see Sect. VII-B and Sect. VII-C), the sensing platform was
mounted on an Ascending Technologies Pelican quadrotor
equipped with a VersaLogic Core 2 Duo single board com-
puter. For the outdoor dataset, the sensing platform was head-
mounted on a bicycle helmet (see Sect. VII-D), and interfaced
to a handheld Sony Vaio. We hereafter provide an overview
of the system implementation, along with a discussion of the
experimental setup and results.

A. Implementation remarks

The image processing is separated into two components: one
for extracting and tracking short-term opportunistic features
(OFs), and one for extracting persistent features (PFs) to use
in V-SLAM.
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Fig. 3. Simulation 2: The average RMSE and NEES over 30 Monte-Carlo simulation trials for orientation (above) and position (below). Note that the
OC-MSC-KF attains performance almost indistinguishable to the Ideal-MSC-KF.

(a) (b)

Fig. 4. (a) The experimental testbed comprises a light-weight InterSense
NavChip IMU and a Point Grey Chameleon Camera. IMU signals are sampled
at a frequency of 100Hz while camera images are acquired at 7.5Hz. The
dimensions of the sensing package are approximately 6 cm tall, by 5 cm
wide, by 8 cm deep. (b) An AscTech Pelican on which the camera-IMU
package was mounted during the indoor experiments (see Sect. VII-B and
Sect. VII-C).

OFs are extracted from images using the Shi-Tomasi
corner detector [39]. After acquiring image k, it is
inserted into a sliding window buffer of m images,
{k −m+ 1, k −m+ 2, . . . , k}. We then extract features
from the first image in the window and track them pairwise
through the window using the KLT tracking algorithm [31].
To remove outliers from the resulting tracks, we use a two-
point algorithm to find the essential matrix between succes-
sive frames. Specifically, given the filter’s estimated rotation
(frome the gyroscopes’ measurements) between image i and
j, i ˆ̄qj , we estimate the essential matrix from only two feature
correspondences. This approach is more robust than the five-
point algorithm [40] because it provides two solutions for the
essential matrix rather than up to ten. Moreover, it requires
only two data points, and thus it reaches a consensus with
fewer hypotheses when used in a RANSAC framework.

The PFs are extracted using SIFT descriptors [32]. To
identify global features observed from several different im-
ages, we first utilize a vocabulary tree (VT) structure for
image matching [41]. Specifically, for an image taken at time
k, the VT is used to select which image(s) taken at times

1, 2, . . . , k−1 correspond to the same physical scene. Among
those images that the VT reports as potential matches, the
SIFT descriptors from each of them are compared to those
from image k to create tentative feature correspondences.
The epipolar constraint is then enforced using RANSAC and
Nister’s five-point algorithm [40] to eliminate outliers. It is
important to note that the images used to construct the VT
(offline) are not taken along our experimental trajectory, but
rather are randomly selected from a set of representative
images.

B. Experiment 1: Indoor validation of OC-V-SLAM

In the first experimental trial, we compared the performance
of OC-V-SLAM to that of Std-V-SLAM on an indoor trajec-
tory. The sensing platform traveled a total distance of 172.5 m,
covering three loops over two floors in Walter Library at the
University of Minnesota. The quadrotor was returned to its
starting location at the end of the trajectory, to provide a
quantitative characterization of the achieved accuracy.

Opportunistic features were tracked using a window of m =
10 images. Every m camera frames, up to 30 features from all
available PFs are initialized and the state vector is augmented
with their 3D coordinates. The process of initializing PFs [33]
is continued until the occurrence of the first loop closure; from
that point on, no new PFs are considered and the filter relies
upon the re-observation of previously initialized PFs and the
processing of OFs.

For both the Std-V-SLAM and the OC-V-SLAM, the final
position error was approximately 34 cm, which is less than
0.2% of the total distance traveled (see Fig. 5). However,
the estimated covariances from the Std-V-SLAM are smaller
than those from the OC-V-SLAM (see Fig. 6). Furthermore,
uncertainty estimates from the Std-V-SLAM decreased in di-
rections that are unobservable (i.e., rotations about the gravity
vector); this violates the observability properties of the system
and demonstrates that spurious information is injected to the
filter.
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(a) (b) (c)

Fig. 5. Experiment 1: The estimated 3D trajectory over the three traversals of the two floors of the building, along with the estimated positions of the
persistent features. (a) projection on the x and y axis, (b) projection on the y and z axis, (c) 3D view of the overall trajectory and the estimated features.

(a)

(b)

Fig. 6. Experiment 1: Comparison of the estimated 3σ error bounds for
attitude and position between Std-V-SLAM and OC-V-SLAM.

Figure 6(a) highlights the difference in estimated yaw
uncertainty between the OC-V-SLAM and the Std-V-SLAM.
In contrast to the OC-V-SLAM, the Std-V-SLAM covariance
rapidly decreases, violating the observability properties of the
system. Similarly, large differences can be seen in the covari-
ance estimates for the x-axis position estimates (see Fig. 6(b)).
The Std-V-SLAM estimates a much smaller uncertainty than
the OC-V-SLAM, supporting the claim that the Std-V-SLAM
tends to be inconsistent.

C. Experiment 2: Indoor validation of OC-MSC-KF

We validated the proposed OC-MSC-KF on real-world data.
The first test comprised a trajectory 50 m in length that covered
three loops in an indoor area, after which the testbed was
returned to its initial position. At the end of the trajectory, the
Std-MSC-KF had a position error of 18.73 cm, while the final
error for the OC-MSC-KF was 16.39 cm (approx. 0.38% and
0.33% of the distance traveled, respectively). In order to assess
the impact of inconsistency on the orientation estimates of both
methods, we used as ground truth the rotation between the first
and last images computed independently using Batch Least-
Squares (BLS) and feature point matches. The Std-MSC-KF
had final orientation error

[
0.15 −0.23 −5.13

]
deg for roll,

(a)

(b)

Fig. 7. Experiment 2: The position (a) and orientation (b) uncertainties
(3σ bounds) for the yaw angle and the y-axis, which demonstrate that the
Std-MSC-KF gains spurious information about its orientation.

pitch, and yaw (rpy), while the rpy errors for the OC-MSC-KF
were

[
0.19 −0.20 −1.32

]
deg, respectively.

In addition to achieving higher accuracy, for yaw in par-
ticular, the OC-MSC-KF is more conservative since it strictly
adheres to the unobservable directions of the system. This is
evident in both the position and orientation uncertainties. We
plot the y-axis position and yaw angle uncertainties in Fig. 7,
as representative results. Most notably, the yaw uncertainty of
the OC-MSC-KF remains approximately 1.13 deg (3σ), while
for the Std-MSC-KF it reduces to 0.87 deg (3σ). This indicates
that the Std-MSC-KF gains spurious orientation information,
which leads to inconsistency. Lastly, in Fig. 8 we show the 3D
trajectory along with an overhead (x-y) view. It is evident that
the Std-MSC-KF yaw error impacts the position accuracy, as
the Std-MSC-KF trajectory exhibits a rotation with respect to
the OC-MSC-KF.

D. Experiment 3: Outdoor validation of OC-MSC-KF

In our final experimental trial, we tested the OC-MSC-
KF on a large outdoor dataset (approx. 1.5 km in length).
Fig. 9a depicts the OC-MSC-KF (red) and the Std-MSC-KF
(blue) trajectory estimates, along with position markers from
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(a) (b)

Fig. 8. Experiment 2: The 3D trajectory (a) and corresponding overhead
(x-y) view (b).

a low-grade onboard GPS receiver (green). In order to assess
the accuracy of both filters, the estimates are overlaid on an
overhead image taken from Google-Earth.

Fig. 9b depicts a zoomed-in plot of the starting location
(center) for both filters, along with the final position estimates.
In order to evaluate the accuracy of the proposed method, the
sensing platform was returned to its starting location at the
end of the trajectory. The OC-MSC-KF obtains a final position
error of 4.38 m (approx. 0.3% of the distance travelled), while
the Std-MSC-KF obtains a final position error of 10.97 m. This
represents an improvement in performance of approximately
60%.

The filters’ performance is also illustrated visually in Fig. 9c
which shows a zoomed-in plot of the turn-around point. The
OC-MSC-KF estimates remain on the light-brown portion of
the ground (which is the sidewalk), which coincides with the
true trajectory. In contrast, the Std-MSC-KF estimates drift
over the dark triangles in the image, which are wading pools
filled with water. This shifting of the trajectory represents a
slight rotation around the vertical axis, indicating a violation
of the rotation nullspace direction Nr.

Figure 10 depicts the uncertainty in the position estimates
along the x-axis (perpendicular to the direction of motion),
along with the uncertainty in yaw (corresponding to rotations
about the gravity vector). It is clear that the Std-MSC-KF
reduces its uncertainty in its heading direction, indicating that
the filter gains spurious information, while the OC-MSC-KF
does not gain information for the rotation around the gravity
vector.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the inconsistency of VINS
from the standpoint of observability. Specifically, we showed
that standard EKF-based filtering approaches lead to spurious
information gain since they do not adhere to the unobservable
directions of the true system. Furthermore, we introduced an
observability-constrained VINS approach to mitigate estimator
inconsistency by enforcing the nullspace explicitly. We pre-
sented extensive simulation and experimental results to support
our claims and validated the proposed estimator, by applying
it to both V-SLAM and the MSC-KF.

In our future work, we are interested in analyzing the
additional sources of estimator inconsistency in V-INS such
as the existence of multiple local minima.

(a)

(b)

Fig. 10. Experiment 3: (a) Position uncertainty along the x-axis (perpen-
dicular to the direction of motion) for the Std-MSC-KF, and OC-MSC-KF
respectively. The OC-MSC-KF maintains more conservative estimates for
position, indicating that the Std-MSC-KF may be inconsistent. (b) Orientation
uncertainty about the vertical axis (z). Since rotations about gravity are
unobservable, the Std-MSC-KF should not gain any information in this
direction. However, as evident from this plot, the Std-MSC-KF uncertainty
reduces, indicating inconsistency. For the OC-MSC-KF, the uncertainty does
not decrease, indicating that the OC-MSC-KF respects the unobservable
system directions.

APPENDIX A

As the camera-IMU platform moves into new environments,
new features must be added into the map. This entails in-
tersecting the bearing measurements from multiple camera
observations to obtain an initial estimate of each new feature’s
3D location, as well as computing the initial covariance and
cross-correlation between the new landmark estimate and
the state. We solve this as a minimization problem over a
parameter vector x =

[
xT
s,1 · · · xT

s,m | fT
]T

, where
xs,i, i = 1 . . .m, are the m camera poses which the new
landmark, f , was observed from. Specifically, we minimize

C (x) =
1

2
{(x− x̂)

T

[
P−1
ss 0
0 0

]
(x− x̂)

+
∑
i

(zi − h (x))
T

R−1
i (zi − h (x))} (76)

where P−1
ss is the information matrix (prior) of the state

estimates across all poses obtained from the filter8, and we
have no initial information about the feature location (denoted
by the block (2,2) element of the prior information being
equal to zero). The m measurements zi, i = 1 . . .m are the
perspective projection observations of the point [see (25)].

We obtain an initial guess for the landmark location us-
ing any intersection method, and then we iteratively mini-
mize (76). At each iteration, we need to solve the following

8We employ stochastic cloning over m time steps to ensure that the cross-
correlation between the camera poses are properly accounted for [42].
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(a)

(b) (c)

Fig. 9. Experiment 3: (a) An outdoor experimental trajectory covering 1.5 km across the University of Minnesota campus. The red (blue) line denotes
the OC-MSC-KF (Std-MSC-KF) estimated trajectory. The green circles denote a low-quality GPS-based estimate of the position across the trajectory. (b) A
zoom-in view of the beginning / end of the run. Both filters start with the same initial pose estimate, however, the error for the Std-MSC-KF at the end of
the run is 10.97 m, while for the OC-MSC-KF the final error is 4.38 m (an improvement of approx. 60%). Furthermore, the final error for the OC-MSC-KF
is approximately 0.3% of the distance traveled. (c) A zoomed-in view of the turn-around point. The Std-MSC-KF trajectory is shifted compared to the
OC-MSC-KF, which remains on the path (light-brown region).

linear system of equations[
P−1
ss + HT

sR−1Hs HT
sR−1Hf

HT

fR−1Hs HT

fR−1Hf

] [
x̃s
x̃f

]
=

[
HT
sR−1

HT

fR−1

]
z̃

↔
[
A U
V C

]
x̃ =

[
P
Q

]
z̃ (77)

Applying the Sherman-Morrison-Woodbury matrix identity,
we solve the system by inverting the matrix on the left-hand
side as [

A U
V C

]−1

=

[
Υ1 Υ2

Υ3 Υ4

]
(78)

where

Υ1 =
(
A−UC−1V

)−1

= Pss −PssH
T

s

· {M−1 −M−1Hf

(
HT

fM−1Hf

)−1
HT

fM−1}HsPss

(79)

Υ2 = ΥT

3 = −
(
A−UC−1V

)−1
UC−1

= −PssH
T

sM−1Hf

(
HT

fM−1Hf

)−1
(80)

Υ4 = C−1V
(
A−UC−1V

)−1
UC−1 + C−1

=
(
HT

fM−1Hf

)−1
. (81)

Here, M = HsPssH
T
s + R. During each iteration, the

parameter vector is updated as

x⊕ = x	 +

[
A U
V C

]−1 [
P
Q

]
z̃. (82)

After the minimization process converges, we compute the
posterior covariance of the new state (including the initialized
feature) as

P⊕ =

[
A U
V C

]−1

(83)

where each element is defined from (79)-(80).
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