SalonBook.com

CIS 499 SENIOR PROJECT FINAL REPORT

Joshua Roth
Advisor: Norm Badler, Jeff Nimeroff
University of Pennsylvania

PROJECT ABSTRACT

SalonBook is a web-based salon management application with appointment scheduling
functionality. It connects clients, salons, and stylists in an online community allowing
users to browse salons and stylists, and book or cancel appointments. Users can also
write and read reviews of salons and particular stylists. Salons can specify the stylists
that work at their salons, as well as the services they offer. Salons can also book
appointments for customers, and can view and print schedules in convenient formats.

OpenTable.com serves a similar need in the restaurant industry, but nothing quite like
this existed to bring clients and beauty salons together online. SalonBook.com fills this
void in a way that is on-demand, easy to use, and effective for users and salon
managers.

My project will use MySQL and PHP to back the interface with strong database
functionality. For appointment scheduling, SalonBook will integrate WebCalendar as a
backend database for appointments as well as a front-end scheduling interface.
WebCalendar is a PHP-based calendaring application that can be a stand-alone
program or integrated into other applications. This project will target the major web
browsers as the initial platform for the Beta version.

The final deliverable will be a functioning web application that can handle all specified
use cases. Some of the major use cases include user account registration, login/logout,
appointment scheduling, schedule viewing and printing, adding stylists and services to a
salon account, adding schedules to stylist account, accumulating points in a client
account, writing and reading reviews for specified salons and/or services, and creating
temporal salon promotions that users can browse and filter.

Project blog:
http://jrothdesign.blogspot.com/

1. INTROUDUCTION

1.1. Significance of Problem or Production/Development Need

Being a salon client today is inconvenient. You have to remember that you need to
make an appointment, then hope you remembered during business hours, and finally
scramble to find the phone number and take time out of your busy day to make the call.
And never mind finding user reviews of local salons and stylists; tracking those down
somewhere on the web is a headache that most don’t even attempt. This is the
experience of countless salon-goers every day, even as we move well into the twenty-
first century. There is a strong, well-articulated need for a “one-stop-shop” online hub
that connects clients to salons, putting all the information users need in one convenient
place, on demand.

Equally surprising, many salons today are still using paper and pencil systems to
schedule appointments and manage customers. These systems are grossly inefficient
at sharing and syncing information, and are prone to costly human error. SalonBook
promises to end the dependence on paper-pencil systems, and put salons in control
with an easy to use interface. SalonBook will be more than just an online scheduler; it
will be a salon management tool that will allow salons to manage stylists and services,
promote sales to customers, and track customer satisfaction.

1.2. Technology

My project uses MySQL and PHP to back the interface with strong database
functionality. To build the data tables I've used PHPMyAdmin, which is a web-based
interface for MySQL. For the front-end development, | primarily used HTML and
JavaScript widgets to style the site and create a simple, clean interface. To facilitate the
process of styling the application, | used Adobe Dreamweaver. However, Dreamweaver
is very limited, and the scope of my project quickly outgrew that of Dreamweaver’s
capabilities. Nonetheless, it was a very helpful tool early on.

For appointment scheduling, I'm going to integrate WebCalendar, a PHP-driven
calendaring application, into my SalonBook application. After much research, | decided
to implement WebCalendar rather than Google Calendars for a number of reasons.
First, WebCalendar is installed locally and runs on MySQL. This means that all of the
code running WebCalendar is in a subdirectory of my project. This gives me a great
deal of control and customization of the application as | integrate it into my program. It
also uses MySQL data tables that nicely sit right next to the tables storing data for
SalonBook. Thus, it is a very clean integration, and a powerful tool. Google Calendars,
on the other hand, would mean outsourcing functionality to Google. Any future changes
to the Google APIs would cause serious problems with my program. Also, viewing and
editing Google Calendars requires user authentication as a prerequisite. This means
users of my site would need Google accounts or | would personally need to be the

“owner” of all the calendars. Neither of these options offered the neat, compact solution
that WebCalendar provided, and therefore were not implemented.

1.3. Design Goals

1.3.1 Target Audience.

There are two distinct target audiences for this project. Salon managers
and owners make up the first primary audience for this project. They will
use the salon side of the web application.

Salon-goers, primarily female, are the second major audience. They will
use the client side of the application, primarily using it to browse local
salons, view user ratings, and make appointments online, all on demand.

1.3.2 User goals and objectives

USE CASES:
User

- Create a new account
- Login
- Search for salons by:
location (city, zip)
name
- View and Edit Account information
- Make an appointment for:

Haircut (Male or female)
With our without color
With or without perm
With or without straightening
Specify stylist

Beauty salon services

Allows users to make recurring appointments

- Cancel an appointment
- View Appointments
- Rate salon/stylist (can only rate Salons/Stylists after an appointment)

- View user ratings of salon and stylist (filter by salon location, service)
- View “My Points”
- View Salon Promotions
- View Top-Rated Salons by
Hair Service
Beauty Service
Atmosphere
Customer Service

Salons

- Create a salon account

- Login

- Edit Salon Account Information

- Add a Stylist

- Remove a Stylist

- Edit the services a stylist provides

- Add/remove beauty services your Salon offers
- View hair ratings of your salon by stylist

- View beauty ratings of your salon

- View/Print schedules

- Add and publish promotions

- Edit promotion information (start date, expiration date, promotion, services)

1.3.3 Project features and functionality

The tab menu on the Home Page allows any visitor to view the top rated salons by four
different categories, and filter these results by zip code. This feature finds all salons that
meet the zip code criteria (if applicable, otherwise all salons), and for each salon, re-
calculates each salons average rating across the four categories every time the page is
loaded. This ensures the information is always maximally updated. Then it displays the
salons that have the highest average ratings by category. Users can click on the salon’s
name in order to get the address and phone number of the salon.

When users sign in, they are directed to their dashboard, their one-stop-shop for all
salon-related information and functionality. At the dashboard they are reminded about
their points total and upcoming appointments. The JavaScript pull-down menus give the
page a clean look while still providing an abundance of information and functionality.
The dashboard also defaults to the Salon Search aspect of the application, where users
can search salons by name or location.

Salons have a similar dashboard that is the root point for all use cases mentioned
above. An important difference, however, is the integration of WebCalendar into their

management experience. WebCalendar is seamlessly embedded into the SalonBook
application, and customized to look and feel like part of the SalonBook application.
While in the WebCalendar application, salons are provided with a link back to their
dashboard, as well as the footer at the bottom of the page with standard links to Home,
About Us, etc.

2. Prior Work

OpenTable.com is the inspiration and the benchmark for this project. OpenTable
represents the primary body of relevant prior work. OpenTable developed a Windows-
based restaurant management application that allows reservations to be made,
cancelled, and viewed locally. Additionally, this application stores customer data and
reservations locally. It is also in constant communication with the website, which is
designed to allow diners to book reservations in real time. This model of local software
combined with a web application is ideal because it maintains all data locally in case the
internet fails, yet it still gives customers real time access to the reservation book.

Another noteworthy set of prior work is the use of Google Calendars in third party
schedule-related applications. The Google Calendars APl is robust, and allows
developers to harness the functionality of Google Calendars as a back-end for storing and
retrieving calendar events. One example is the Ithaca College school library website,
which inputs its fluctuating hours into a Google Calendar, and then daily pulls that
information into a MySQL database to then be displayed on the website front-end.

3. PROJECT DEVELOPMENT APPROACH

3.1. Algorithm Details

JavaScript
Architecture

+—> PHP +—> User Interface

MySQL database HTMI

Database Design

Many-to-one relationships are key to sound database design. In designing a database,
inadequacies and inefficiencies that are noticed later in the development cycle can be
costly, and so a lot of time and thought went into this early on. It is tempting to create
database tables like classes in object-oriented programming. This would imply that a set
of promotions, or stylists belonged to a salon, and thus are fields in the “salon” table.
However, this method would be quite inefficient and limiting. Each entry would have to
be unnecessarily large to accommodate many potential promotions and stylists, and yet
still be finitely limited. Good database design means finding these redundancies and
pulling information apart into separate tables that represent relationships between
different tables.

It turns out that in the salon world, it is often the case that stylists work at multiple salons
on different days, and sometimes offer a different subset of services at each salon. If
stylists are tied to a column in a salon table, none of these dynamic relationships could
be represented. However, | created a Salon-Stylist-Services table that stores a salon id,
stylist id, and service id. While there may be many entries for each salon and/or stylist,
there will only be one unique combination of a salon, stylist and service. Each entry
represents the fact that a specific stylist offers a specific service at a specific salon.
Further, when a salon removes a stylist, the stylist is not deleted from the stylist table.
Rather, only the entries in the salon-stylist-service table that relate that salon to the
stylist are removed. This is more natural because the stylist is not ceasing to exist;
simply their relationship with that salon is. Thus, all the desired information is
represented, and there is no redundancy because no combination of all three will ever
be repeated. The same thing was done with promotions; | created a separate
promotions table that stores the relationship between that promotion and the salon that
created it.

Displaying Dynamic Data from Many-To-One Tables

Many-to-one relationships are very powerful in representing data, but it does mean
making a tradeoff in a different respect. Retrieving and displaying information to the end
user becomes much more difficult this way. It means you are one, two, or sometimes
three additional steps (database queries) away from the information you need. Here is
one example of where | encountered this issue and how | overcame it:

When viewing salon promotions, users can filter promotions by salon name, zip code, or
city. They can also specify hair and/or beauty services they want to filter results by. The
salon name, zip, and city forms allow me to query the salon table with the user’s
constraints. However, this returns an array of salon database entries. If | had stored
promotions as columns in the salon table, | would be done, and could simply loop
through the resulting salons and display the promotions within each entry. With my
design, | need to loop through each of these salons still, but then perform a database
query within this loop to find promotions in the promotions table that have the salon id

currently in the loop, as well as the service constraints that the user specified. This
query can also yield multiple results (promotion entries). So then | need an embedded
loop that goes through each of these results and puts them in a “results” array that
exists outside all loops. Once all resulting promotions are put in the “results” array, step
through to the next salon in the outer loop and repeat. Clearly, this is quite a bit more
difficult as a result of the many-to-one database design. However, it is a tradeoff worth
making because these retrieval scripts are one-time inconveniences to solve and write;
whereas the enhanced database design continually increases the power and
performance of the application, especially as it grows.

Delete in Batches, Insert in Batches

Another algorithmic concept came into play when salons add or remove services that a
stylist offers at their salon (Same also applies to beauty services offered at a salon, but
slightly more simple because no stylists are involved).

In this case, a salon chooses a stylist in order to edit their services. The first order of
business is to properly populate the checkboxes with the services that the stylist
currently offers. To do this, the script queries the many-to-one salon-stylist-service table
for entries with the salon’s id that is currently logged (session variable) and the stylist id
of the chosen stylist to edit (URL variable passed page to page when salon chooses
stylist), and each service. If a result is found, the box is checked.

The next step occurs when the salon (un)checks the desired services and submits the
form by hitting the submit button. One option is to handle each check box individually;
but this would be inefficient and messy. Instead, | first find all entries in the salon-stylist-
services table that relate this salon to the stylist at hand, and remove them. Then, in a
loop for each checkbox, | add a new entry for this salon, the stylist, and the service tied
to that checkbox IF it is checked. This is not only a much cleaner routine, but it also
keeps all related data together in the database. This is very important for database
management and upkeep as the entries grow over time.

$ POST versus $ GET variables

These two types of variables offer developers two different ways of passing information
across pages and sessions, each with pros and cons.

$ POST variables are “posted” on an event, and then become available for use.

$ POST variables are a secure way of passing information because they are only
stored within a particular session. However, they are generally less stable than $ GET
variables, and are also more prone to syntax problems. For example, $ POST variables
do not work if the name of the variable has a space in it.

$_GET variables, on the other hand, are passed from page to page via the URL. They
are very reliable and stable. Additionally, they offer the important benefit of allowing
users to bookmark a page or send a link to a friend and go directly to that point. For a

social application like SalonBook, this can be very beneficial. It means users do not
have to repetitively fill out forms again and again to return to a desired part of the site.
However, the down side is that URL variables are inherently public. This means $ GET
variables are not suitable ways to store sensitive or personal information, like
passwords, emails, names, etc. While this did limit my use of $ GET variables, | made
a conscious decision to use them as much as possible in order to enable to social book
marking and sharing of links to my application. This choice enhances the user
experience of SalonBook by limiting frustration and lowering barriers to revisit the site.

3.2. Target Platforms

3.2.1 Hardware
Any internet-enabled computer

3.2.2 Software
Safari, Mozilla Firefox

3.3. Project Milestones

- Completed Literature Review: Over the past 8 weeks, | thoroughly researched
the work and tools that have already been released. OpenTable.com is an
exemplar of the application | am aiming to create in terms of functionality. |
researched their implementation and platforms, in addition to exploring the actual
application for functionality and features. | also reviewed the functionality and
usability of Google Calendars, and determined that it can be used as a backend
database for appointments as well as a potential front end user interface for
appointments. I've also researched and familiarized myself with all the tools
mentioned below, which | have gone on to set up and test.

- Learned PHP and MySQL.: | purchased a self-teaching guide to PHP and
MySQL and read the first 300 pages. This familiarized me with the language and
the technology, and walked me through a few basic PHP script and MySQL
query examples.

- Set up PHP: | downloaded and installed PHP on my computer. | wrote a few
basic scripts to test my installation and confirmed that it was working.

- Set up MySQL: | downloaded and installed MySQL. | encountered problems with
the daemon, but was able to change configurations using the Terminal to
eventually get my computer to run the database.

- Set up MySQL Query Browser: Downloaded and installed this GUI in order to
facilitate interaction with MySQL. | got it running and used it to create a new user
account on my database, as well as the ‘salonbook’ database. Unfortunately, it
was minimally helpful, and still required me to query MySQL using SQL code.

- Set up phpMyAdmin: Downloaded and installed this web-based MySQL
interface. | found it to be extremely useful as a graphical interface for MySQL. |

used this tool to build my database tables and in some cases added elements to
these tables (i.e. states).

Design and Create Database Tables: Iterative design process to eliminate
redundancies and create many-to-one relationships wherever possible

Set up ADODB: | downloaded ADODB; | decided to use ADODB after
thoroughly researching the many differing options available, including PEAR DB,
Propel, Phing, etc. ADODB is a database abstraction layer that allows me to
write portable PHP code not limited to MySQL. (chose not to use it)

Set up ActiveRecord: ADODB implements ActiveRecord, which allows
developers to create PHP objects that represent database entries. Get and set
database queries can be done in an object-oriented fashion without writing any
hard-coded SQL. | had a lot of trouble finding good documentation of ADODB
ActiveRecord and getting it to work on my machine. Eventually | was able to
debug my test scripts, and | now can get and set database records with
customized PHP class objects. (chose not to use it)

Set up OpenlLaszlo: | downloaded and installed OpenlLaszlo Explorer. | also
began familiarizing myself with the declarative syntax it employs and the
functionality it offers. (chose not to use it)

Download and Learn Dreamweaver: | downloaded and installed Dreamweaver
to help me create the HTML framework of the site. | spent time learning the tools
and going through tutorials.

Build the Basic Interface: Using Dreamweaver, JavaScript date picker, and
Spry menu bars (JavaScript)

Build PHP Functionality: Build the functionality of all use cases mentioned
above except appointment scheduling. This was the largest part of the project,
and was done over the course of 3-4 weeks.

Research Google Calendars API: In depth review of APl and assessment of its
applicability to my project. | also researched other calendaring applications that
could be potential options for this project.

Download and Install WebCalendar: Installation included creating all MySQL
database tables used by WebCalendar, and syncing it with my local server and
MySQL database. | also studied the code (open source) to better understand
how it was functioning and where useful functions were located.

Integrate WebCalendar into Salon Interface: Customized the settings of
WebCalendar to fit with my application. Also customized the look and feel of
WebCalendar to make it seamlessly fit into the SalonBook application.

Build User Appointment Scheduling Functionality: Built on top of the
WebCalendar system by querying, inserting, updating, and removing entries in
WebCalendar’s data tables. This was an enormous step that took a long time to
get working. WebCalendar was initially not responding to my PHP scripts as |
expected, and so it requires significant studying of WebCalendar’s source code
and settings.

4. WORK PLAN

4.1 Project timeline

1/30 Learn PHP and MySQL, literature review complete

2/17 Design data tables and build them with phpMyAdmin

3/1 Build PHP database objects using ADODB

3/20 Initial version of user interfaces complete

3127 Integrate interfaces with database; start building PHP
functionality

4/5 Build functionality for all use cases except scheduling

4/24 Full integration of WebCalendar system and build all user
scheduling functionality

5/1 Project and Presentation completed

6. REFERENCES

- Sams Teach Yourself: PHP, MySQL, and APACHE by Julie Meloni

- Google Calendar API:
http://code.google.com/apis/calendar/docs/2.0/developers guide protocol.html#
AuthAuthSub

- ADODRB official website: http://adodb.sourceforge.net/

- Melonfire Web Articles about using ADODB:
http://www.melonfire.com/community/columns/trog/article.php?id=142&page=8,
http://www.melonfire.com/community/columns/trog/article.php?id=144&page=7

- Lacorna ADODB ActiveRecord documentation and examples:
http://www.melonfire.com/community/columns/trog/article.php?id=144&page=7

- OpenTable.com

7. Work Log

WEDNESDAY, JANUARY 28, 2009
Design Choices

There are two fundamentally different approaches to creating a dynamic web
application that is backed with data. The first is to employ relational data
tables in a database (MySQL) to store, search, and retrieve data. | would then
use PHP to communicate with the database, serving as the link between the
web html and the MySQL database. The advantages of this approach are two
fold. First, it makes search and sort operations very simple. Secondly, it
supports a growing data set in a natural and well-organized fashion. The
downside is that this design is fairly rigid once building begins. After the
various tables are defined to capture the desired data, it becomes extremely
difficult to redesign or augment the data tables to encompass more or
different data.

The second option is to use text files and file readers to act as a pseudo-
database. The advantages here are essentially the reciprocals of the
disadvantages of the database design, and visa versa. While text files can be
much more flexible to changes, they make search and sort operations far more
costly.

Together with Professor Nimeroff, I've decided to design and implement a true
database for this project. This choice means that my focus and time will be
primarily geared towards building a functioning database that can be
manipulated dynamically by users.

Because | have no experience with databases, PHP, or servers, | am currently
studying the theory and syntax of these various aspects on my own. I've
installed MySQL, Apache, and PHP on my laptop and have already experimented
with these tools. Below is a relational table that | created and manipulated with
MySQL Query Browser:

aaa Uriss bl §F loralfear wid L by

u- CELECT % FRIHE q@El . gregeery Loy . I'- .;L.th i T e
bk = Lt it £ | e
—_— | nforaaas KR
O Cary | e Bl s
1 T T E HE_ e
- Gragmy Damdms Greoe 139 [T] x 1_'“_." o I
!-. Kogan Tuj L9 Fres *_':* ey
L] T o g R LR L T D LE] — el
e o Ve Ty
Ll mj il i 34
L l-n—p—-—-_'n--rn- Parrmt
& i Do arad Purerion
) O i
e e e Fprmfnen
& B = ey Nirssan
LISE TLE LTS T rl
@ s sy hng Fa TRE A ¥ L M omne | ™ol e e P sl T Ak
Cody Blanske B What T gy i Vel By
- R T e] i Tl -Taa Surch
BLDE Wb A Eaig ot B 0 Ldd Pl irta asd
O LD e daabang wieond = =

The first step in designing a database is to lay out all of the tables that you'll
need and the information that they'll contain. Because of the above-mentioned
drawback of databases, this step is critically important. The time spent
perfecting these tables up front can save that time 100 fold down the road.
There is a 3-step process explained in the MySQL book | bought for designing
and flushing out data tables. | went though the first step and I'm currently on
the second. These "steps” exist to help identify and eliminate redundancies in
the data, making the database maximally efficient. Below are the tables (and
their contents) that | have thus far:

User Salon Stylists
W (4] Wl
first name Narmne MName
last name emall salon.id
&1 Bl LRSS WOord
password city.ld
phong = nelghborhood. |d
Primary City addriss
“Points” services(]
Visits City Service
user.id id id
salon.id Marme MName
datétime Duration
senvice.ld
stylist.id
Neighborhoods Appointments
id User.id
Name Salan.id
city. g Service.id
Suylist.id

The two biggest issues right now are how to handle appointments and how to
handle an array of services (manicures, pedicures, massages, etc) beyond
simply haircuts. For appointments, it seems natural to create tables that
mirror the structure of a schedule. But, this would mean creating tables for
each day, for each stylist. Intuitively this doesn't sound like a good thing. So
for now, | have appointments modeled as stand alone events that get pushed
onto the bottom of a growing table, and contain the critical information. This
choice is still very much up for debate.

As for services, | can't figure out how to model them in terms of tables without
ending up with one table having to store arrays. I'm not sure if storing arrays
as table elements is possible or advisable. I'm going to have to discuss this
with Professor Nimeroff and figure out if there is a way to capture this data
soundly. If not, | may have to limit the scope of the website to just haircuts,
and the basic services that accompany them (like coloring, highlights, perm,
etc.).

WEDNESDAY, FEBRUARY 4, 2009
The New Plan

After research, thought, and discussion with Professor Nimeroff, I've
formulated a plan that shifts the focus of my work.

The mere scheduling aspect of the site is not novel, and the management of
scheduling data in my own database would be extremely tedious and time
consuming. So, | decided to look into the offerings of various calendar toolkits
already available on the web. It turns out Google Calendars has all of the
functionality that | would need for the scheduling aspect of the site. Google
Calendars supports creation of new calendars, adding and deleting events
(including recurring events), and viewing the schedule. The API for this toolkit
is openly available online and will prove to be very helpful in harnessing this
technology towards my project.

http://code.google.com/apis/calendar/docs/2.0/developers_guide_protocol.ht
ml#AuthAuthSub

While this calendar application will be very useful, my project will extend far
beyond the simplicity of a generic calendar application. SalonBook is more than
just a scheduler, it is an online salon management tool and salon community.
There will be three distinct interfaces customized for three distinct groups of
users. Salons, stylists, and clients will all create accounts and experience
SalonBook is a different way. Below are the "use cases” that my site will set out
to handle, organized by user type:

USECASEY

Lier

Create & B Beoounl

Legin

Siearch fog salons by:
Ipcatinn {idress, neighborkood, Sy, Sise, 5
DaTE.
A,

e (range]
: —_
Make an appoinimond for:
Balom
Ehairast (Male of fomale)
Witk guf witkeul aeler
With of withaut porm

With or without Baghlighs
(58s for all cther hatr seruieei)

Specsfied aplist
Lisrigacaficd anyinin
Wik or without moies o the irylistssion

Oriber boauty salon sorvioes
(roques): for corain person o nod in eotes)

“*Aliow wuors to make rocurming appoiniments**

Camor] an appointmest
Biate sabonstytist
WView "My Poisti™
Redocen My Point™

Sakeld

SR R RO

Log s

Addmemoss snyhen il e dorvioe By o)
Addmemase hair sorvines (R sadh, eyl
Addrerren beashy vty

Add pvalabdbey schidabis (R ook bematy v i SR
Edaficicis svalsbaisty scbodalon

Confrrs vhing fogeciti {aod thar sarvice)
Consfirm ppyius Lo
Wirar claomis. by
LLER oS TR
Ferguansy o vikan
Tetad viists
Eeytas’s glamas
Sreses rconnd
erader

View reteg of the sakematyiab
Vigu Frims nchadslen by
Dy
nia
Hair Sorvion
Bty
Wik

Sty
HEr Sorvies

Stylists

Creake accoumt
Log m
AcceptBeject salon reguests
Accept/Reject services
Addremove salons (and senaces at that salon)
AddBemove services (that they do a1 a pamiculas sabon)
Add/Remove availability schedules
View schedule by:
Dy
Week

View clients by
Most recent visis
Frequency of visits
Total visis
Services received
Ciender

After thinking through all of the use cases, | had to revisit my data tables in
order to capture all of the data | would need. The use cases dictate what data
you will need access to at what points in a user experience, and so as stepped
through the data tables as dictated by the use cases, | found many deficiencies
in my initial tables. In order to allow for more flexible relationships between
salons, services, and stylists, | created tables with "many-to-one” relationships
that could represent a wide array of cases without redundancies. | also decided
to split "services” into two separate categories: hair services and beauty
services. The two aspects are distinctly different when it comes to salon
management and schedule organization. It became very messy to try to treat
them as different instances of the same "service" object. Below is a screenshot
of my new set of data tables as I've designed them so far:

Ly =] ' £ B L J = L] i L] i L]
L Ll 1 | Bbet | mgies A E e gy | e e L B
. = 1 1 i 1 i 1 L - L el o] 1 | LT E 1 i L | L R 1
: =TT | = i T 3 L3 "=
& — A] : - " P, o= [

k E™k 1 i [= Sopnis L5 |

- LELLE e i i s = =

P =

o ! ol =

L __TEL AL R e —
.l_rl_l_l-l : B I

o -l | | -

11

i1

o

15

1] . '] -] ¥ - ¥ o] . 5

17 Syt B | i En | — e L Hinfelt | L = L ST] ket (S |

mm 4 | 1] || 1 1 L | -'.-l---l. | 1 Caie b ol | 1 L L i |

L] aE 1 - . | mt L L= =T | I LT i T |

o L1 | b } 1 =w=lm-rEr I

ri

e

K

4

4 - - - - - - - - -

m -—PIH | ..—H‘I-l-l.'. 1 H'H L i ey mla i

' | | c]

i - o I = e

It =X TS T Ink:

1 . Fomwp o P g e = -

n e e B i it

id e -

Kl L= o -

- P

| =]

Its clear from this that the scope and functionality of my website will go far
beyond a generic scheduler. Google Calendars will assist in back-end
management of only a small portion of the data being stored, managed, and
queried. Building the three distinct user interfaces and linking all of these
pieces and data together will be a substantial undertaking. Thus, Professor
Nimeroff suggested Amazon Web Services as a potential way of offloading the
grudge work of managing my own database. It turns out Amazon has a service
called SimpleDB that is perfect for the needs of this project. SimpleDB allows
developers to create and store data tables, then access and manipulate that
data with simple function calls from my program.

http://aws.amazon.com/simpledb/

Using SimpleDB will allow me to focus my efforts on the interfaces and pull
together a rich, cohesive, and novel application. To do this, I'm going to
employ OpenLaszlo. Its syntax is relatively straightforward and is capable of
deploying applications in a number of different formats, abstracting away
gritty compatibility issues.

So, this is the new plan. The next steps from here are to finalize the data
tables and use cases, and to create a features matrix with all the features |
want for my application against all the various tools that already exist and are
relevant to this project.

WEDNESDAY, FEBRUARY 11, 2009
Database Tables!

After looking into options for database management interfaces, | found
phpMyAdmin and was able to successfully download and integrate it with my
Apache server. Using phpMyAdmin, | constructed a new database ("salonbook™)
and built all of the tables that | designed. The process was tedious but fairly
straightforward.

| ran into some issues trying to figure out what exactly the different "indexing"
options are. The different "index" options for a given field are: none, primary,
unique, index, fulltext. | realize that for tables with unique id's, these are
primary indexes into that table. However, the 'index’ option is unclear to me.
I'm hypothesizing based on research that it is appropriate for storing id's from
other tables in a field, in order to link the data together. For now | used
‘unique’ for fields that should never have repeats appear in the table. One
example would be email addresses for users; two users should never be able to
have the same email address. | also looked into what ‘fulltext’ means, and |
discerned that it allows you to search and sort data based on string matching.
These indexing issues are important, and | plan on teasing out the details with
Professor Nimeroff when | discuss this with him.

Another issue was whether to store "notes” as text types or as varchar types. |
looked into the definitions and limitations on the two types, and they both
have pros and cons. Varchars will truncate padding on the end of input,
whereas text types will not do that. Text types have limited size, whereas
varchars don't. Still unsure which I'm going to use though.

Date/Time types are also a mystery to me right now. Not sure which type to
use between: date, time, datetime, timestamp. For now | used type ‘datetime’
for appointment times.

In order to avoid having sets or enums within tables, | established tables that
feature many-to-one and many-to-many relationships. Examples are

salon_stylist_h_service and salon_b_service. This way there may be many table
entries with the same stylist and/or salon and/or service, but never a repeat
of any combination of these three values. This relationship allows for much
more flexibility in terms of the use cases that can be handled. With this
design, for example, | can represent the circumstance where a stylist works at
various salons, and that he offers a different set of services at each salon.

I'm not sure if | am or am not going to store hair appointment information.
Google Calendars can provide me with equivalent back-end functionality.
However, | built the tables for now, if nothing else to maintain customer
history information (which may prove valuable to salons down the line).

Here are some screenshots of my database and data tables | built:

salonbook database and its tables:

php iy el il Sarear losaingat b Colsnass salontask
ff Strettere MB0L [Baaoh ety fhBupsit Jilspen S5 Ooemtans o Peiileges [e
Tutds Actizn

dEEBD Pecords’ Tyes Castaticn vt
Databass e] [} B X @ BAGIEAM lennd_meschih ci ;:
palcenbiaal 115} Bty raling = B OE X b OMIRAM Lt sesdah g G
Tip
Enbia Ay e e = OF X B NN IEAM larind sl i B
ealonkock [15) = & = LB
oy B @ &M T OWIRAM e sedihos .0
B Gty S T - TLk
@ meady rateg T B el [~} B Ow oM b RAIBAW e swdahos B0
B gty Gl ELE
@ sty L Bl retieg [| W x LI TRE QT T
Ry Lk
@ Farratng L B servicw =] EE > B WAIBAM e gwslil s B.E
=t G CE .
i reghtoeond _ eeilghberteed e R EMW= B byl BAM e swsakib el :L:-
B daltn
[vion b ssevios _ e [~ | E W X PR I T T i.E
B ki Shebid b tsevios ALy
i e _ e B servics - | HOE X B MAIEAM L swsdkih sl 1+
B ikl
FRCE _ e aylied b dsredcs [| H W X L FTLTRT T B e i.c
H nipoois ELE
| BEEHE L WAGIRRM LAt dwsdiib el 3.F
LB
T eyl 7| O X B WAGIEAM lemied_swsehib si .6
{0
C e & W X v OIS e st s 1 E
L]
O g eda - TOWIBAY e swedth g 3.E
k
1 tabdel s Aum B Ry IEAM Rabe] swedieh o l.:;.:_
2 e M R M S————
o P wiew Y Drsis: Dect oy
e v Uit G Al
[TV S — " umber of Selds

"user” table and its fields:

Field Type Collaion AMributes Null Delsult Exirs Action
=hl"| int[268) Mo Mone B X REDEF
st varchar(15] latin_swedish_ci Mo hone mS X EDEM®
1 lnst virchar(20) latin_swedizh_ci Mo Mone mFS X EDRRE
[omall varchar[30) lating_gwedith_ci Mo Mone mA X BEDEBRE
1 password varchar(15] lativ]_swedigh_ci No None E S X EDRREERE
] phons in[v0) Mo Mone WX E DR
T oeityld in[28E) Mo Moo E S X ERRERF
[pender tinyint(1) L WS ERR T
Tl poinks int[255) Mo Moo S X ERRBCR
T CreckAiliUchsckAlWthssioctod: I .+ X B B B K

"state” table (with all 50 states entered into the table):

name
Alabama
Alaska
Anzona
Arkansas
Califomia

L 00O CD

-
||
-

Connacticul

'@ﬁ‘dﬂ-fﬂ-ﬁﬂl"ﬂ-ﬂi

]

&= 2 B8 53 =
§Ez23
R

Louisiana

=i
m

o o o A 4 o

&
2

-
=F

8

Maryland
Massachuselts
Michigan

23 Minnesota

il

o

30 30 M0 DS M D0 B B 3 O M M0 3 M
[[T

SRR 555555555885888888%

L

"neighborhood” table (with a few familiar neighborhoods entered):

id name city id

@ X 1 South Miami 1
G X 2 Coral Gables 1
1 ¥ 3 Coconut Grove 1
X 4 University City 2
O @ X 5 CenterCity 2

*Because | store the ‘city id" in the neighborhood table, it has indirect
knowledge of the city to which the neighborhood belongs, and the city knows
its state. So because of this structure, a neighborhood knows what city and
state it’s in without explicitly storing city or state name in the "neighborhood"
table.

The next thing | need to look into and work on is setting up and learning how to
integrate ADO DB. It'll play an integral link in passing information between my
database and my interface.

SUNDAY, MARCH 1, 2009

ADODB

ADODB is a database abstraction layer that allows developers to write portable
code that is not tied down to one particular type of database. It also has an
ActiveRecord feature that turns database rows into objects. That lets me work
with object-oriented programming rather than tediously writing and rewriting
MySQL queries. I've spent the last 10 days familiarizing myself with these tools
and experimenting with them.

The first thing | did was research and learn to connect to my database with the
tools built into PHP. I've successfully written a couple scripts that can connect
to my database, create a PHP object, and perform an insert into the database,
using the properties of that object as the field values for the table. One script
looked like this:

<?php

class stylist{

public S$first = 'not set’;
public Slast = 'not set’;
public Semail = 'not set’;
public Spassword = 'not set’;

function stylist(Sfirstname, Slastname, Semailaddress, Spass){
Sthis->first = Sfirstname;

Sthis->last = Slastname;

Sthis->email = Semailaddress;

Sthis->password = Spass;

3

function insert(){
mysql_query("INSERT INTO stylist (first, last, email, password)
VALUES ('Sthis->first’, 'Sthis->last’, 'Sthis->email’, 'Sthis->password')");

3

3
Scon = mysql_connect("localhost”,"rjroth”,"aZsXdCf");
if (1Scon) {

die('Could not connect: ' . mysql_error());

3

mysql_select_db("salonbook", Scon);

/ /Create new stylist objects

Sbob = new stylist('Bob’, 'Vance', ‘Bob@Bob’, 'BV');
Sjane = new stylist('Jane’, 'Dance’, 'Jane@Bob', 'JD');
/ /Call the function that executes the MySQL query
Sbob->insert();

Sjane->insert();

mysql_close(Scon);

7>

This was great, but because the insert() function uses a hard-coded MySQL
query, this code would be useless if my data were moved to a different

database. That's where ADODB comes in. Useful ADODB tutorials and examples
were not easy to come by on the internet, but | was able to piece together a
cursory understanding that allowed me to use ADODB to perform some simple
scripts that can get and set data to MySQL. Here is one example of a script
that SELECTS * from my "state” table and prints each element on a separate
line and numbers them:

<?php

include("/Library/WebServer/Documents/adodb/adodb.inc.php”);

Sdb = NewADOConnection('mysql’);

Sdb->Connect("localhost”, "rjroth”, "aZsXdCf", "salonbook");

Sresult = Sdb->Execute("SELECT * FROM state");

if (Sresult === false) die("failed");

while (!Sresult->EOF) {

for ($i=0, Smax=Sresult->FieldCount(); $i < Smax; Si++)
print Sresult->fields[Si]." ’;

Sresult->MoveNext();

print *

\n";

3

7>

This is a step in the right direction, but it still doesn’'t save me much tedium as
a coder and it’s only a small step in the direction of object-oriented coding.

ADODB implements a version of ActiveRecord that can make the entire process
of getting and setting data object-oriented. Unfortunately, there are even less
examples of code that use this online. Here's the most helpful one | could find:

http://phplens.com/lens/adodb/docs-active-record.htm

| tried to implement this and integrate it with my database. However, | was
unable to get anything to work. When | ran the script no INSERTS would actually
be made into database table, and thus far my debugging efforts have been
futile. Below is the script that mirrors the example from the above link; it is
designed to load a row from the "states” database into a newly created "state”

object, and then as a test | want to print out the ID from the state that was
just loaded:

<?php
include('/Library/WebServer/Documents/adodb/adodb.inc.php’);
require_once('/Library/WebServer/Documents/adodb/adodb-active-
record.php’);

// configure library for a MySQL connection
Sdb = NewADOConnection("mysql");

// open connection to database

Sdb->Connect("localhost”, "rjroth”, "aZsXdCf", "salonbook") or die("Unable to
connect!"”);

echo 'hello world’;

class state extends ADOdb_Active_Record

{

var $_table = 'state’;

3

Sstate = new state();
Sstate->load("id=5");
echo Sstate->id;

7>

Unfortunately, | can't get this to work so far. Hopefully, with help from Jeff, |
will turn the corner this week and go on to build all the objects | will need to
represent my database.

SUNDAY, MARCH 22, 2009

ADODB Working and Interfaces

Salealiook Lops
Apparfilrments My Aedaunlt Lalsa Rabngs
Sdakg & new appomtment mous Edit my asgount i=fo Mo Raic a malon ouNs
Wigw my appntments aver My Poinis aver View sabion ratisgs weE
{1zl an appamiment Deep degsp dzep
Appaiatment hidory down down doan
Mown Foed
You have {xx)i spcoming
Eppointmonish
[xiam) el e T o haleents
Mendavs and Thursdays
Vai b ot ol
Tuotal Sales Pawnia
BLEE
% 1]
Yigw Prome=ans

First and foremost, | was finally able to get ADODB working. Now | can connect
to my database using adodb and access my database tables using adodb
ActiveRecord. This is important because it abstracts away the messy and
database-specific SQL code and allows me to use object-oriented
programming. I've run multiple test scripts that add, edit, and remove items
from tables using ActiveRecord, and they are all functioning properly.

Home Laogout Hep
salonlbagk Logo
Schedules Siylisis Sorvices
Edii Availability Mo Add Remnove Stylisis mouse | AddTemove Hair Services mouse
Mako an appoinimen! aves Canfirm Sty aweT Add Remove Bowety Sondors. 0Nz,
VWaow Sehodule drap Coanfzrm Seplnt Sebeodules deop AddEd= Peomaboana d=op
Prnt Schodule dows Seyl=t Hewiewa dawa dann

My Balon Mews Feod

Yoo Bave [0 afyisil Pequesil

balia (ing 4] 00 g1 & 20pe
o hiv Ral g
Your curreni Salon Hatag s P rancis® modidied | ilability schedyl
5% BTARS

Cuigwh

Yourmosipepelarswiistis: | | 0000 snse
Jang Dog (2% Stars)

(icwh

Search Clienis

After getting over this hump, | shifted my focus to the other side of
things...the interface. The first step in interface design is to layout a skeleton
design for the critical web pages users will see. Thus far I've laid out the
interface for the user dashboard and salon (manager) dashboard. In designing
these interfaces, | came up with the idea of having a Facebook-style
"newsfeed” for salons and users that will write relevant updates and news to
the feed by pulling information out of the database based on date. | believe
this feature will give my users a more rich, personalized experience. Also, the
top navigation bar will feature mouse-over pull down menus so that the
interface will be clean and minimal until a user seeks more information.
Otherwise the interface will look cluttered. The other major interfaces will be
the scheduling interface for the salon and for the user. For the salon, | will use
the Google Calendars interface as well as their database functionality to
present the full spectrum of calendar viewing and editing. For user scheduling,

| will have a form that asks for the user to specify the neighborhood, date,
time, service, and salon/stylist if applicable when searching for an
appointment. | will display the results with my own interface rather than Google
Calendars for this part. It will simply show the available salon(s) and the
time(s) available at and near the requested time. One of the main purposes of
designing the interfaces was to make sure that my database would be
capturing all of the information my interface would need. Once | designed
these skeleton interfaces, | realized | would need a "Promotions” table that
kept track of new deals and sales salons decide to offer. This information
would be needed for the news feed, which could then pull these deals out of the
database based on relevance (location, dates, etc) and serve them to users on
the news feed. Thus, | created a new table in my salonbook database to
support this information.

FRIDAY, APRIL 3, 2009
User Interface

For the past two weeks | have shifted my efforts to the front-end interface of
SalonBook. | installed Adobe Dreamweaver and Illustrator, and | have been
using both to design the look and feel of the application.

| have been learning how to use Dreamweaver on the go, and it includes lots of
helpful tools that can create database connection, session variables, and
database queries. Of course, the built-in tools are not nearly advanced or
complex enough to be sufficient for my needs, but thus far it has provided a
good starting place and code infrastructure.

| struggled for a long time trying to figure out how to use session variables
directly in SQL queries, but | was eventually able to figure out the syntax and
method for accomplishing this.

For now, | am working on trying to build all of the functionality of the site with
the exception of the scheduling aspect. This will likely prove to be the most
challenging, from a conceptual standpoint as well as implementation

SUNDAY, APRIL 19, 2009
Ul Progress

The following use cases are now functional: User login/logout, user create
account, user view/edit account information, salon search (with filters by
name, city, or zip code), promotions search (with filters by salon name, salon
city, salon zip, and by beauty or hair services being promoted/discounted),
viewing user point total, salon login/logout, salon create account, salon
view/edit account, salon add new stylist, salon remove stylist, salon
add/remove services offered by each stylist, salon add/remove beauty services
that they offer, salon create promotions, salon view promotions, salon edit
promotions (promotion note, start date, expiration date, and services
applicable), and salon view customer ratings of stylists at their salon.

Additionally, I've spent time editing the CSS of the page layout and the spry
menu bars in order to get a better look and feel, even though the design is still
fairly basic, as | have spent much more time wrestling with PHP and SQL
queries trying to build the functionality. Here are some screenshots of the
interface:

User Dashboard:

50K

Appointments My Account Salon Ratings

Hy Padnls Tolal: 168

Search Salons

Customer Salon Name Ciky | psami a
Reviews oR
Salkon Zip Code ~ ! (=

Pramations

Search Results:

View/Edit Account Info:

Juin Maowk
Sign In
Contact Us

About

SalonBook

Appaantments My Acoount Salon Ratngs

Account Information

First Name: jpara
Last Mame: ran
Email Addréss: hgrohBasusannnds
Pagsword: weeeees
Phone Mumbear: miiarsis

Promotions Search/Filter:

Promotions

Appointments My Account Salon Ratings

View Promotions

filbeer boy:

Salon Mame — Oty [maes)
OR

Zip Code

Hair Service | 7 or Beauty Serviee | 7§)
[miner)

Pramotions:

LT TR

MNote: Free split end treatment
Start Dabe: 2006-04-14

End Dabe: 2009-04-15

Mame:

Note: test 2

Start Dabe: 2009-04-21
End Date: 2009-04-23

One interesting problem that arose was the way to retrieve and pass
information from the database to and from the client end. | designed my
database to be flexible in the salon-stylist relationships it could represent.
Essentially, my database is designed to allow for the possibility that a stylist
belongs to multiple salons, AND that they offer a different subset of services at
each salon. | did this by having a many-to-one relationship table of
salon/stylist/service so that while there will be multiple records for each salon,
stylist, or service, each combination of stylist-salon-service is unique. While
this is great for richness of information, it makes retrieval of information
much more difficult. In order to allow salons to add/edit stylists and services
they offer, | would have to be looking up each stylist and each service for that
salon. The solution was this:

Scolname_Stylist = "-1";
if (isset(S_GET[id1)) {

Scolname_Stylist = S_GET['id];
}
/ /find stylist in database from URL variable passed through link on previous
page
mysql_select_db(Sdatabase_test, Stest);
Squery_Stylist = sprintf("SELECT * FROM stylist WHERE id = %s",
GetSQLValueString($Scolname_Stylist, “int"));
SStylist = mysql_query(Squery_Stylist, Stest) or die(mysql_error());
Srow_Stylist = mysql_fetch_assoc(SStylist);
StotalRows_Stylist = mysql_num_rows($Stylist);

/ /check to see if stylist currently offers women's haircut
Scolname_Services = "-1";
if (isset(S_GET['id])) {
Scolname_Services = S_GET['id];
}
SwomensCut = 1;
mysql_select_db(Sdatabase_test, Stest);

Squery_Services = sprintf("SELECT * FROM salon_stylist_h_service WHERE
“stylist id” = %s AND “salon id" = %s AND "hair service id" = %s" ,
GetSQLValueString(Scolname_Services, "int"), GetSQLValueString(SsalonlID,
"int"), GetSQLValueString(SwomensCut, "int"));

SServices = mysql_query(Squery_Services, Stest) or die(mysql_error());
Srow_Services = mysql_fetch_assoc(S$Services);

StotalRows_Services = mysql_num_rows(SServices);

/ /check to see if stylist currently offers mens cut

SmensCut = 2;

mysql_select_db(Sdatabase_test, Stest);

Squery_Services2 = sprintf("SELECT * FROM salon_stylist_h_service WHERE
“stylist id” = %s AND “salon id" = %s AND "hair service id" = %s" ,
GetSQLValueString(Scolname_Services, "int"),
GetSQLValueString(Srow_Salon['id], "int"), GetSQLValueString(SmensCut,
"int”));

$Services2 = mysql_query(Squery_Services2, Stest) or die(mysql_error());
Srow_Services2 = mysql_fetch_assoc(SServices2);

StotalRows_Services2 = mysql_num_rows(S$Services2);

/ /delete womens haircut script
SwomensCut=1;
SdeleteSQL = sprintf("DELETE FROM salon_stylist_h_service WHERE " stylist
id "=%s AND “salon id "=%s AND "hair service id =%s",
GetSQLValueString($S_GET['id], "int"),
GetSQLValueString($salonID, "int"), GetSQLValueString(SwomensCut, "int"));

mysql_select_db(Sdatabase_test, Stest);
SResult1 = mysql_query(SdeleteSQL, Stest) or die(mysql_error());
/ /delete mens haircut script

SmensCut=2;

SdeleteSQL2 = sprintf("DELETE FROM salon_stylist_h_service WHERE " stylist
id "=%s AND “salon id "=%s AND "hair service id =%s",
GetSQLValueString($S_GET['id], "int"),
GetSQLValueString($salonID, "int"), GetSQLValueString(SmensCut, "int"));

mysql_select_db(Sdatabase_test, Stest);
SResult2 = mysql_query(SdeleteSQL2, Stest) or die(mysql_error());

/ /insert script

/ /insert womens cut if checked
if (S_POST["Services1"] == 1) {
SinsertSQL = sprintf("INSERT INTO salon_stylist_h_service (" salon id", "stylist
id", "hair service id ") VALUES (%s, %s, %s)",
GetSQLValueString(SsaloniD, "int"),
GetSQLValueString($S_GET['id], "int"),
/1 GetSQLValueString(isset(S_POST['Services1]) ? "true” : ",
"defined","1","0"));
GetSQLValueString(SwomensCut, "int"));

mysql_select_db(Sdatabase_test, Stest);
SResult1 = mysql_query(SinsertSQL, Stest) or die(mysql_error());
}
/ /insert mens cut if checked
if (S_POST["Services2"] == 2) {
SinsertSQL2 = sprintf("INSERT INTO salon_stylist_h_service ("salon id", stylist
id", "hair service id") VALUES (%s, %s, %s)",
GetSQLValueString(SsaloniD, “int"),
GetSQLValueString($S_GET['id], "int"),
/1 GetSQLValueString(isset(S_POST['Services2']) ? "true” : ",
"defined","1","0"));
GetSQLValueString(SmensCut, "int"));

mysql_select_db(Sdatabase_test, Stest);
SResult2 = mysql_query(SinsertSQL2, Stest) or die(mysql_error());
}

//go to:
SdeleteGoTo = "Salon_Dashboard.php”;
if (isset(S_SERVER['QUERY_STRINGY)) {
SdeleteGoTo .= (strpos(SdeleteGoTo, 7)) ? "&" : "?";
SdeleteGoTo .= S_SERVER['QUERY_STRING'];

3
header(sprintf("Location: %s", SdeleteGoTo));

Basically, what this script does is for the selected stylist (and logged in salon),
populate the forms on the screen to the current state of the world. Then, once
the form is submitted, delete all entries in the salon/stylist/service table.
Then add new entries into this table for the stylist and salon for the selected
services. It is a nice solution because it adds and deletes in batches, thus
keeping related information together in the data tables as well, rather than
checking and adding/removing each separately.

User viewing and filtering Promotions by Salon name, city, or zip code was also
challenging. | could create a recordset that would pull all salons that matched
the criteria of the name, city, and zip code fields. | could also pull promotions
from the database that matched the beauty/hair service filter. The problem
was integrating the salon filter to the promotions filter. The promotions table
only stores the salon id of the salon that created a given promotion. So | could
not use the filters as direct search criteria into the promotions table. | had to
use embedded do-while loops and a new array to store the results in order to
later print to screen. Below is most of the code that populates the array with
the proper promotions:

Scolname_city = "-1";

if (isset(S_POST['city'])) {
Scolname_city = $_POST['city'];

3

Scolname_name = "-1";

if (isset(S_POST['name'])) {
Scolname_name = §_POST['hame’];

3

Scolname_zip = "-1";
if (isset(S_POST['zip)) {

Scolname_zip = $_POST['zip];
}
Sname="Josh's Salon";
mysql_select_db(Sdatabase_test, Stest);
Squery_Salons = sprintf("SELECT * FROM salon WHERE “zip code™ = %s OR
(‘city id" = %s AND name LIKE %s) ORDER BY name DESC",
GetSQLValueString(Scolname_zip, "int"), GetSQLValueString(Scolname_city,
"int"), GetSQLValueString("%" . Scolname_name . "%", "text"));
$Salons = mysql_query(Squery_Salons, Stest) or die(mysql_error());
Srow_Salons = mysql_fetch_assoc($Salons);
StotalRows_Salons = mysql_num_rows(S$Salons);

mysql_select_db(Sdatabase_test, Stest);
Squery_HairServices = "SELECT * FROM " hair service™";
SHairServices = mysql_query(Squery_HairServices, Stest) or
die(mysql_error());

Srow_HairServices = mysql_fetch_assoc(SHairServices);
StotalRows_HairServices = mysql_num_rows(SHairServices);

mysql_select_db(Sdatabase_test, Stest);

Squery_BeautyServices = "SELECT * FROM "beauty service™";
SBeautyServices = mysql_query(Squery_BeautyServices, Stest) or
die(mysql_error());

Srow_BeautyServices = mysql_fetch_assoc(SBeautyServices);
StotalRows_BeautyServices = mysql_num_rows(SBeautyServices);

Scolname_beauty = "-1";

if (isset(S_POST['beautyservice'])) {
Scolname_beauty = $_POST['beautyservice'];

3

Scolname_hair = "-1";

if (isset(S_POST['hairservice)) {
Scolname_hair = $_POST['hairservice'];

3

Sdate = date(y-m-d);

Spromos = array();
$i=0;
dof{

SthisID = Srow_Salons['id'];

//5thisID = 2;
mysql_select_db(Sdatabase_test, Stest);
if (Scolname_hair == 0 && Scolname_beauty == 0){

Squery_Promotions = sprintf("SELECT * FROM Promotions WHERE “salon id" =
%s ORDER BY “end date™ ASC", GetSQLValueString(SthisID, "int"));

}
if (Scolname_hair != 0 && Scolname_beauty != 0){

Squery_Promotions = sprintf("SELECT * FROM Promotions WHERE “salon id "™ =
%s AND (" beauty service id" = %s OR "hair service id" = %s) ORDER BY "end
date’ ASC", GetSQLValueString(SthisID, "int"),
GetSQLValueString(Scolname_beauty, "int"),
GetSQLValueString(Scolname_hair, "int"));

}

if (Scolname_hair != 0 && Scolname_beauty == 0){

Squery_Promotions = sprintf("SELECT * FROM Promotions WHERE “salon id" =
%s AND “hair service id" = %s ORDER BY "end date™ ASC",
GetSQLValueString(SthisID, "int"), GetSQLValueString(Scolname_hair, "int"));
}
if (Scolname_hair == 0 && Scolname_beauty != 0){

Squery_Promotions = sprintf("SELECT * FROM Promotions WHERE “salon id" =
%s AND "beauty service id" = %s ORDER BY "end date™ ASC",
GetSQLValueString(SthisID, "int"), GetSQLValueString(Scolname_beauty,
"int"));

}

SPromotions = mysql_query(Squery_Promotions, Stest) or die(mysql_error());
Srow_Promotions = mysql_fetch_assoc(SPromotions);
StotalRows_Promotions = mysqgl_num_rows($SPromotions);

dof{

if (StotalRows_Promotions > 0){

Spromos[$i] = Srow_Promotions;
Si++;
}
} while(Srow_Promotions = mysql_fetch_assoc(SPromotions));
} while(Srow_Salons = mysql_fetch_assoc($Salons));

For each result in the salon recordset based on the name/city/zip filter, the
script uses the salon id from each salon and queries the promotions table with
the salon id, beauty service id, and hair service id. It's likely that this too will
pull multiple matching promotions. So, now a second do-while loop puts each
resulting promotion from this query into an array. Then the outside loop moves
to the next resulting salon from the salon filters, uses that id and repeats the
promotions search, and so on until the result sets are null.

The next big step is to add the functionality of actually scheduling
appointments. I've been in a dialogue with Professor Nimeroff about the best
way to do this. The goal is to use Google Calendars, but there are conceptual
issues with authentication, calendar ownership, and limitations on embedded
calendars that need to be worked out. The zend framework and gData libraries
are very robust and allow me to create calendars, add events, remove events,
query events, and set availability in a fairly straightforward manner. The
problem is how and who to authenticate into google (behind the scenes) and
also how to enable more than read-only embedded calendars so that the Google
Calendars interface can be utilized.

The difficult, important questions that | am currently working through for the
scheduling aspect include if /how to package multiple services into one
appointment, how to assign appointments for hair and beauty when the stylist
is not specified, and how to have appointment blocks pre-specified by the
salons. Once | come up with solid answers to these fundamental questions, and
after the rest of the Ul is working, | will begin implementing Google calendars
as a back-end appointment database and pulling that information forward on
the client side of my site.

Posted by Josh Roth
at 8:16 AM

8. RESULTS

The result of this project was a successful high-fidelity prototype of a Salon
management and scheduling application. | successfully implemented all of the
above mentioned use cases, and achieved clean interfaces that further enhance
the user experience.

The many-to-one database tables successfully represent a robust set of
scenarios and relationships that are critical to salon management. WebCalendar
was integrated well to provide salons with full calendaring functionality. The
aesthetic customization of WebCalendar makes it undifferentiated from the
SalonBook application.

For users, scheduling was the heart of the application. And indeed, users can
currently select a salon, stylist, date, and service to make an appointment. They
can then view or cancel appointments, and rate salons on past appointments.
Additionally, | achieved the goal of making SalonBook a one-stop hub for salon-
related information, including Salon search and contact information, peer reviews
of nearby salons and stylists, and easy viewing of relevant promotions that
salons are advertising. Together, all of this functionality gives users an
unmatched value proposition for booking salon appointments. Users also
accumulate points after attending and rating an appointment, which, upon launch
of the site, would be redeemable for salon credit. This is an additional source of
incentive to use this application.

For more results, see video screen captures of user and salon interfaces in
action.

9. CONTRIBUTIONS

The contributions of this project to my knowledge base are extensive. Before
starting, | had no previous experience with web development or any of the tools
used for this application.

Database Design is an invaluable aspect of the process that | mastered in the
early stages of the project. Building many-to-one relationships and robust
databases were required in developing SalonBook. Familiarizing myself with SQL
and database languages is also very useful going forward.

| also take away the combined understanding of PHP, MYSQL, and HTML, and
how they come together to create a rich, database-backed web application.

Finally, web applications can become more than the sum of their parts with the
successful integration of open source tools. Under limited time and resources,
there is only so much one person can develop. However, by identifying
appropriate open source projects and integrating them seamlessly, an application
can become much more extensive and functional. Integrating WebCalendar, and
widgets like the JavaScript date picker are perfect examples of this. If integrated
poorly, these tools are obvious and detract from the user experience.

Fortunately, | was able to integrate these tools well and package SalonBook as
more than the sum of its parts.

In terms of contributions to the field, this prototype stands as a proof of concept
for the idea of web-based appointment scheduling of any kind. Doctors’ offices,
dentist offices, salons, and many other industries are in great need of online, on
demand scheduling. This project proves that it is very possible to build this
functionality with the above-mentioned tools at very low cost. All tools used were
open source, except Dreamweaver.

10. FUTURE DIRECTION

Like I mentioned earlier, full integration of open source tools is critical in creating a
seamless overall application. There are some ways in which WebCalendar was not
integrated which | would like to pursue given more time.

The first is to automate WebCalendar account creation and login when those tasks are
completed for the SalonBook application. This would require inserting a new Salon user
into the appropriate WebCalendar database tables when a salon creates a SalonBook
account. Of course, this would also ensure that the WebCalendar account information
matches their SalonBook information. The same for login would be an important
improvement. As it exists now, salons have to log in to the WebCalendar application
additionally within the SalonBook system when they navigate to it via the Dashboard.
Separate sign in is only required once per session though, as the login is stored
throughout a session even as they go back and forth from WebCalendar to SalonBook.
Even so, automated account creation and login are important integration features that
would be next in line, given more time.

Also, a constraint of WebCalendar was that it only allowed a user to have one calendar.
Ideally, a salon would have one calendar for each stylist. This could be achieved using
an automated WebCalendar account creation script with a well-defined prefix naming
system. Salons would be oblivious to what is actually going on behind the scenes, and

simply be able to navigate to calendars that are tied to each stylist. When a salon would
add a stylist, another WebCalendar account (and corresponding calendar) would be
created, using a prefix of the stylist name and salon name. This would dramatically
increase the power of the application as a schedule visualization and distribution tool.
Availability would be more apparent, and schedules could be printed for each stylist at
the start of the day.

Additionally, | would like to host the prototype online and run usability tests with surveys
to gauge the effectiveness of the interface and functionality. This is a key step to
perfecting the front-end interface and the functionality of the tools.

Finally, | would like to explore more dynamic, Web 2.0 tools like JavaScript, jQuery, and
OpenLaszlo in more depth with the hope of making the interface richer for the user.
Over the course of this project, | was able to get a small taste of these web
development tools and their capabilities. They would allow me to give my application a
more desktop software-feel on the web, with features like animation and drag-and drop.
Unfortunately, | did not have enough time to fully explore them, and so that would be an
addition improvement to consider going forward.

