VIBE

Visualization of Intrafraction Behavior from Electromagnetic Tracking

Tamar Nevo

Presentation Overview

- Define the problem \& medical background
- Identify goals of the project
- Outline my process
- Demo the final animation
- Discuss medical contributions
- Suggest future directions

Problem Definition

- Organs naturally move during the course of radiation treatments
- Sidenote: Intrafraction motion = organ movement within one treatment on a given day
- Interfraction motion = organ movement between treatments on different days
- Though more obvious in organs like the lungs, which expand and contract with breathing, other organs, like the prostate, also demonstrate movement
- Radiation that reaches non-target (non-cancerous) tissue may result in various side effects
- There has been an effort in radiation therapy to improve the precision of cancer treatments, reducing side effects and better controlling tumors

Background

- Accuracy of radiation is challenging due to natural organ movement during treatments
- Radiology Oncologists are working to improve the precision of cancer treatments - to better target tumor-bearing tissue and to reduce the unintentional doses reaching normal tissue - by tracking the motion and deformation of the cancerous organ
- The Calypso® 4D Localization System uses electromagnetic sensors to track the exact position and motion of the organ in real-time
- For this, it is sometimes described as "GPS for the Body®"

How does Calypso ${ }^{\circledR}$ work?

- Prior to treatment, three Beacon® transponders are implanted into the target tissue, in this case, the prostate gland

Beacon® ${ }^{\circledR}$ transponder (8 mm in length)

- Beacon ${ }^{\circledR}$ transponders are tiny electromagnetic sensors, which monitor the position and motion of the organ
- Through safe radiofrequency waves, the Calypso System tracks and records the location of each transponder
- Can be thought of as "motion capture for organs"

Project Goals

- Understand intrafraction prostate motion by visualizing and reanimating organ contours
- Provide results for Radiology Oncologists, allowing them to interpret the outcomes and determine their practical application and significance
- Presenting data with which to identify potential motion patterns

Tools \& Languages

- Calypso 4D Localization System
- Beacon® Transponders
- MATLAB
- Excel (VBA)

Resampling the Data

- The Calypso machine records and outputs the location of each transponder sequentially so the original excel document looks like the following:

Transponder	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	PositionTimeString
1	0.768007685	-0.670575507	1.237602205	2008-02-12T15:14:24.9445000-05:00
2	0.543598218	0.305644489	-1.031243917	$2008-02-12 \mathrm{~T} 15: 14: 25.0355000-05: 00$
3	-1.595396957	0.522831979	-0.420960678	$2008-02-12 \mathrm{~T} 15: 14: 25.1165000-05: 00$
1	0.773501245	-0.685332166	1.253303285	$2008-02-12 \mathrm{~T} 15: 14: 25.2385000-05: 00$
2	0.530271027	0.278862085	-1.017448201	$2008-02-12 \mathrm{~T} 15: 14: 25.3195000-05: 00$
3	-1.606955031	0.507740164	-0.432733083	$2008-02-12 \mathrm{~T} 15: 14: 25.4005000-05: 00$

- Want location of transponders at the same instance to track movement and deformation of three-transponder triangle over a period of time
- In order to obtain this triangle, the data must be resampled

Resampling the Data

- Generate b-spline curves to explain the position and movement of each transponder independently in order to retrieve its position at any time during the 18 minute interval
- Using VBA code, create separate sheets that isolate each transponder's $\mathrm{x}, \mathrm{y}, \mathrm{z}$ position, like so:

Transponder	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	PositionTimeString
1	0.768007685	-0.670575507	1.237602205	$2008-02-12 T 15: 14: 24.9445000-05: 00$
1	0.773501245	-0.685332166	1.253303285	$2008-02-12 T 15: 14: 25.2385000-05: 00$
1	0.765768046	-0.703897066	1.261517722	$2008-02-12 T 15: 14: 25.5525000-05: 00$
1	0.770603624	-0.703192297	1.257850022	$2008-02-12 T 15: 14: 25.8365000-05: 00$
1	0.771952138	-0.705367329	1.250430385	2008-02-12T15:14:26.1505000-05:00

- Format allows me to copy an entire column (about 3650 times) into an array and graph the movement along one of the axes over time

Resampling the Data

- Convert timestamps from 2008.02:1211/5:1424.4945000.05:00 to seconds using another VBA parsing function
- Remove spurious data (specifically zeros, where the machine might have faulted)
- Ready to graph

Resulting Graphs

$\Theta 00 \quad$ <Student Version> Figure 1 File Edit View Insert Tools Desktop Window Help

QOO <Student Version> Figure 2 File Edit View Insert Tools Desktop Window Help

$\Theta 00 \quad$ <Student Version> Figure 3 File Edit View Insert Tools Desktop Window Help

- X, Y, and Z position graphs for Transponder 1 demonstrate some shift around 500 seconds
- \quad Similar graphs are generated for T2 and T3 (9 total)

Resulting Graphs

- Transponder 1 b-spline curves, which can later be interpolated from to find positions at any time

Interpolation

- Interpolate from each of the 9 graphs to obtain the three-dimensional locations of each transponder at every second, generating three points to create a triangle

T1			T2			T3		
x	y	Z	x	y	z	x	y	z
0.7677	-0.6713	1.2385 ;	0.5427	0.3005	-1.0336;	-1.6027	0.5202	-0.4254;
0.7625	-0.6838	1.2551 ;	0.5427	0.3005	-1.0336;	-1.6027	0.5202	-0.4254;
0.7623	-0.6899	1.2590 ;	0.5409	0.2947	-1.0305;	-1.6073	0.5170	-0.4247;
0.7669	-0.6938	1.2542 ;	0.5382	0.2886	-1.0218;	-1.6066	0.5136	-0.4160;
0.7857	-0.7359	1.2553 ;	0.5484	0.2296	-1.0264;	-1.5884	0.4618	-0.4088;
0.7824	-0.7274	1.2477 ;	0.5505	0.2276	-1.0324;	-1.5750	0.4530	-0.4146;
0.7660	-0.6884	1.2363 ;	0.5445	0.2795	-1.0389;	-1.5701	0.5065	-0.4369;
0.7635	-0.6767	1.2409 ;	0.5350	0.3304	-1.0342;	-1.5994	0.5270	-0.4460;
0.7610	-0.6877	1.2461 ;	0.5269	0.3151	-1.0342;	-1.6127	0.5200	-0.4471;
0.7586	-0.7098	1.2502 ;	0.5199	0.2539	-1.0372;	-1.6070	0.4856	-0.4406;
0.7579	-0.7243	1.2456 ;	0.5131	0.2594	-1.0337;	-1.6037	0.4787	-0.4362;
0.7578	-0.7055	1.2492 ;	0.5193	0.2828	-1.0385;	-1.6053	0.4977	-0.4388;
0.7581	-0.6752	1.2542 ;	0.5338	0.3153	-1.0473;	-1.6117	0.5411	-0.4481;
0.7594	-0.6686	1.2465 ;	0.5388	0.3118	-1.0380;	-1.6074	0.5301	-0.4453;
0.7765	-0.6923	1.2463 ;	0.5399	0.2912	-1.0419;	-1.6055	0.5122	-0.4496;
0.7906	-0.7162	1.2451 ;	0.5380	0.2669	-1.0523;	-1.6057	0.4897	-0.4599;
0.7664	-0.6899	1.2273 ;	0.5321	0.2940	-1.0499;	-1.6040	0.5033	-0.4703;

Filtering Data

- Because the accuracy of the machine is .1 mm , much of the perceived movement is machine noise
- Format excel columns to display only 1 decimal place

T1			T2			T3		
x	y	z	x	y	z	x	y	z
0.8	-0.7	1.2 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.3 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.3 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.3 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.3 ;	0.5	0.2	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.2 ;	0.6	0.2	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.2 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.2 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.2 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.3 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.2 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.2 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;
0.8	-0.7	1.3 ;	0.5	0.3	-1.0;	-1.6	0.5	-0.4;

Animating Triangle

- With three points in space, can plot triangle
- Calculate mins and maxs and from this, compute bounding box

```
Ffunction box = boundingBox(P1, P2, P3)
    ztriangle vectors
    x=[[P1(1)
    y =[P1(2) P2(2) P3(2)];
    %calculate all 6 mins and maxs
    mins = calcMins(P1, P2, P3);
    minX = mins(1); minY = mins(2); minZ = mins(3);
    maxs = calcMaxs(P1, P2, P3); ; ; maxZ = maxs(3);
    *square vectors
    xbox1 = [minX maxx maxx minX minX]
    ybox1 =[minY minY minY minY minY];
    ybox1 =[minY minY minY minY minY m;
    ybox2 = [maxY maxY maxY maxY maxY];
    xbox3 = [maxX maxX maxX maxX maxX];
    xbox4 = [minX minX minX minX minX];
    splot all four squares to create cube and plot triangle
    figure(1);
    axis('square');
    fil13(x,y,z,'r');
    hold on (xbox1,ybox1,zbox1,'b',xbox1,ybox2,zbox1,'b',xbox3,ybox3,zbox1,'b',xbox4,ybox3,zbox1,'b');
    plot3(xbo
box = 0;
```

end

Animating Triangle

- To see the changes over time, I wrote a function called "animate," which creates an .avi file of a sequence of all of the frames

```
function animation = animate(P1, P2, P3)
[length, three] = size(P1);
aviobj=avifile('test2.avi');
hf= figure('visible','off');
for i = 1:length
    p1 = [P1(i,1), P1(i,2), P1(i,3)];
    p2 = [P2(i,1), P2 (i,2), P2 (i,3)];
    p3 = [P3(i,1), P3(i,2), P3(i,3)];
    boundingBox(p1,p2,p3);
    aviobj=addframe(aviobj,hf);
end
*movie(M);
aviobj=close(aviobj);
end
```


Finding Transformation Matrices

- First plot graphs for 1) Centroid movement in the X, Y, and Z directions, 2) Rotation between each frame and the first, and 3) scale change in each direction
- Because the scale change is mainly constant in all dimensions, Dr. Badler and I chose only to consider translation and rotation

Centroid Movement

Rotation

Finding Transformation Matrices

- Next step: for each triangle, compute 1) translation and 2) rotation matrix between first and current frame
- Use tMatrices, rMatrices functions to output an array of matrices for each frame, which can then be applied in a for-loop to animate the contour

Finding Transformation

Matrices

```
function matrices = rMatrices(P1, P2, P3)
[length, three] = size(P1);
matrices = zeros(4,4,length-1);
normals = calcNormals(P1, P2, P3);
angles = plotAngles(P1, P2, P3);
centroid = calcCentroids(P1, P2, P3);
for i = 1:length-1
    v1 = [normals(i,1) normals(i,2) normals(i,3)];
    v2 = [normals(i+1,1) normals(i+1,2) normals(i+1,3)];
    %find rotation axis by taking cross product of consecutive frames
    *normals
    w = cross(v1, v2);
    wLength = sqrt(w(1)^2 + w(2)^2 + w(3)^2)
    if wLength ~= 0
    w = w/wLength;
    W end
    a=w(1);
    c=w(3)
    theta = angles(i)
    %use values from the rotation axis vector ( }\textrm{w}=[\textrm{a},\textrm{b},\textrm{c}])\mathrm{ ) and the angle
    *between the two normals to plug into rotation matrix; combine values
    %for translation
    m}=[\mp@subsup{a}{}{\wedge}2+(1-\mp@subsup{a}{}{\wedge}2)**\operatorname{cos}(theta), a*b*(1-cos(theta))-c*sin(theta), a*c*(1-cos(theta))+b*sin(theta), 0;
        a*b*(1-cos(theta))+c*sin(theta), b^2+(1-b^2)**os(theta), b*cc*(1-cos(theta))-a*sin(theta), 0;
        a*c*(1-cos(theta))-b*sin(theta), b* c*(1-cos(theta))+a*sin(theta), c^2+(1-c^2)*\operatorname{cos(theta),, 0;}
        0, 0, 0, 1];
    matrices(:,:,i) =m;

\section*{Displaying Contours}

Data provided:
\begin{tabular}{ccc}
\(X\) & \(Y\) & \(Z\) \\
-10.205 & -295.748 & 164.664 \\
-8.057 & -295.761 & 164.664 \\
-5.908 & -295.569 & 164.664 \\
-3.959 & -295.221 & 164.664 \\
-3.76 & -295.179 & 164.664 \\
-1.611 & -294.674 & 164.664 \\
0.537 & -294.105 & 164.664 \\
2.686 & -293.528 & 164.664 \\
4.441 & -293.072 & 164.664
\end{tabular}
- Each row represents a point along one contour loop, and each loop is separated by a blank row
- MATLAB does not recognize blank rows, so I replaced blanks with an indicator (arbitrarily 5000000) so that a function could recognize the end of a contour loop
- Before animating, I tested the 3-D contour display with the function drawContour

\section*{Displaying Contours}
drawContour generates a 3-D wireframe of the prostate, which can be rotated in MATLAB to display different perspectives

function contour \(=\) drawContours \((X, Y, Z)\)
[length, one] = size(X);
temp \(=0\);
firstX \(=\mathrm{X}(1)\);
firsty \(=\mathrm{Y}(1)\);
firstz \(=Z(1)\);
*make each contour line form a full circle sby filling in the blank with the first
selement of the loop
for \(i=1\) length
if \(X(i)=5000000\)
\(\mathrm{X}(\mathrm{i})=\mathrm{firstx}\)
\(Y(i)=\) firsty;
\(\mathrm{Z}(\mathrm{i})=\mathrm{firstz}\);
if i ~= length
firstX \(=\mathrm{X}(\mathrm{i}+1)\);
firsty \(=\mathrm{Y}(\mathrm{i}+1)\);
firstz \(=Z(i+1)\);
end
sdraw the contour lines
for \(j=1: i\)-temp
\(a(j)=x(j+\) temp \() ;\)
\(b(j)=Y(j+\) temp \() ;\)
\(c(j)=z(j+\) temp \() ;\)

\section*{end}
plot3(a,b, c) ;
hold on;
temp \(=i ;\)
end
end
hold off; end

\section*{Animating Contours}
- Ran into several problems
- "Frozen screen" effect because of overriding initial array that contains indicators
- Correctly displaying wireframe and holding axes constant
- Jumping around - incorrect rotation matrix

\section*{Animating Contours}
for \(i=1\) :time- 1
irstX \(=\) origx (1);
firstz \(=\) origy (1);
\(m=\operatorname{tm}(:,:, i) \star r m(:,:, i) * \operatorname{tim}(:,:, i)\);
for \(\begin{aligned} & j=1: \text { numpoints } \\ & \text { if } \operatorname{orig}(j)= \\ & x=5000000\end{aligned}\)
\(x(j)=\) firstx;
\(Y(j)=f i r s t y ;\)
\(\underset{\text { if }}{\mathrm{Z}}(\mathrm{j})=\) firstz \(;=\) numpoint

firsty \(=\operatorname{origy}(j+1) ;\)
firstZ \(=\operatorname{origZ}(j+1) ;\)
end
smultiply by matrix
newX \((j)=m(1,1) * X(j)+m(1,2) * Y(j)+m(1,3) * Z(j)+m(1,4) ;\) newY \((j)=m(2,1) * X(j)+m(2,2) \star Y(j)+m(2,3) \star Z(j)+m(2,4) ;\)
newZ \((j)=m(3,1) * X(j)+m(3,2) * Y(j)+m(3,3) * Z(j)+m(3,4) ;\)
odraw the contour lines
for \(k=1: j\)-temp
XLOOp (k) \(=\) newX ( \(k+\) temp );
zLoop \((k)=\) newZ \((k+\) temp \()\)
end
axis([-100 \(50-350-180110240]) ;\)
plot3(xLoop, yLoop, zLoop):
plot3 (xLoop, yLoop, zLoop) ;
clear xL
temp \(=j\)
else
कmultiply by matrix
newX \((j)=m(1,1) * X(j)+m(1,2) * Y(j)+m(1,3) * Z(j)+m(1,4)\); newY \((j)=m(2,1) * X(j)+m(2,2) * Y(j)+m(2,3) * Z(j)+m(2,4) ;\)
newZ \((j)=m(3,1) * X(j)+m(3,2) * Y(j)+m(3,3) * Z(j)+m(3,4)\) end \({ }^{\text {n }}\)
end
aviobj=addframe(aviobj,hf);

\section*{Issue with Transformation}
- Forced fitting
- Neglecting scale change/deformation
- Causes forced rotation
- Working on computing ONE transformation matrix that takes into account shearing/scaling/compression, in addition to rotation and translation
- Scale disparity
- Small triangle controlling large contour
- Tiny shift in triangle translates into magnified shift in contour

\section*{Issue with Transformation}



\section*{Contributions}
- Ability to visualize organ motion from spaciotemporal data, providing a better understanding of intrafraction prostate motion
- Computing clinically useful measures
- centroid movement, rotation angles, min/max displacement
- Opportunity for identifying patterns of behavior and improving treatment accuracy
- Published in an abstract submitted to ASTRO, the American Society for Therapeutic Radiology and Oncology and another anticipated publication in the near future

\section*{Development of a Novel System for Visualizing Prostate Motion in Patients Undergoing Radiotherapy with Electromagnetic Target Localization and Tracking}

Author Block R. R. Rajendran, T. Nevo, E. Rubin, A. Kassaee, N. Badler, N. Vapiwala
University of Pennsylvania Medical Center, Philadelphia, PA

\section*{Future Directions}
- Fixing "jumpiness" of current animation
- Future application by Radiology Oncologists in effort to reduce error and improve accuracy/effectiveness of therapy
- Ability to import data files and run program directly, essentially reducing number of steps
- Build an interface that displays useful outcomes
- Real-time animation and ultimately automated target monitoring and radiation beam adjustment during treatment

\section*{Acknowledgements}
- Dr. Norm Badler, project advisor, who attended all hospital meetings with me and kept me on track throughout the semester with weekly conferences and daily encouragements
- Professor Jianbo Shi, master of MATLAB, who made himself beyond available, patiently and relentlessly sitting with me for hours debugging code
- The team at HUP - Ramji Rajendran, Ali Kassaee, and Neha Vapiwala - for being such a pleasure to work with, guiding me and patiently explaining all of the medical terminology
- My friends and family for their support```

