
Artificial Intelligence for Go

CIS 499 SENIOR PROJECT DESIGN DOCUMENT

Kristen Ying
Advisors: Dr. Norm Badler, Dr. Maxim Likhachev

University of Pennsylvania

PROJECT ABSTRACT

Computers have beaten pro human chess players through their superior
computational ability. With the ancient board game Go, however, the sheer
number of possibilities, as well as the subjective nature of what a more desirable
board state is make it a more challenging problem. On February 7th, 2008, a
computer finally beat a pro Go player – but with a 9-stone handicap on the human
player, and with processing power over 1000 times that of Deep Blue.

Crazy Stone by Rémi Coulom uses Monte-Carlo Tree Search and in 2006 began
the current trend of using algorithms from this family. The Monte-Carlo method
creates playouts, or played games with random (light playout) or heuristic-based
(heavy playout) moves. Applied to game trees, each node keeps a win rate,
remembering the number of playouts that were won from this position. As is often
desirable in Go, such analysis favors the potential of winning, regardless of the
potential margin by which the game may be won. Thus such algorithms may
often result in winning by a small margin. Crazy Stone also utilizes pattern
learning. The program MoGo, which received some early inspiration from Crazy
Stone, made headlines when it defeated a pro player in a full-scale 19x19 game
of Go on February 7th, 2008. The program uses the algorithm UTC (Upper
Confidence bounds applied to Trees) for Monte-Carlo.

This project is an investigation into designing AI for the board game Go, Using a
Monte Carlo Search Tree algorithm. The goal here is to create a program that is
playable with limited computational resources, allowing it to be presented in the
form of a console game. The end product should be a game on the XBox 360
which can be played by novice Go players.

Project blog:
http://kaising.wordpress.com

1. INTROUDUCTION

Computers have beaten pro human chess players through their superior computational
ability. With the ancient board game Go, however, the sheer number of possibilities, as
well as the subjective nature of what a more desirable board state is make it a more
challenging problem. On February 7th, 2008, a computer finally beat a pro Go player –
but with a 9-stone handicap on the human player, and with processing power over 1000
times that of Deep Blue.

1.1. Significance of Problem or Production/Development Need

The purpose of this project is to apply the Monte Carlo Tree Search algorithm to the
complicated problem of having a program with limited computational resources play Go.
Additionally, it is also intended as an investigation into the field of AI and XNA, to gain
personal experience in preparation for entry into the video game industry.

1.2. Technology

This project will use C# and eventually XNA to produce code, hopefully progressing to
use an XBox360 developer kit. The main papers will be technical papers written by the
creators of Crazy Stone and MoGo.

1.3. Design Goals

1.3.1 Target Audience.
The target audience of the final product is recreational / amateur Go
players; people who would like to practice new knowledge of Go. The aim
is not to be the best Go AI, but to be playable with only the computational
resources of an XBox 360.

1.3.2 User goals and objectives
The user should be able to play a game of Go against a program with
reasonably fast responses, as a recreational game or learning tool to
reinforce beginners’ knowledge of the game.

1.3.3 Project features and functionality
The main features of the game are 1. The ability to play Go against a
human component, and 2. A visual interface for the game on the XBox 360.

2. Prior Work

One of the first, if not the very first implementations of AI for Go was by PhD
student Albert Zobrist in 1970. It used two influence functions to assign numeric
values to the possible move locations. One influence function was based on
which colors occupied what locations; it gave +50 to a location with a black stone,
and – 50 to a location with a white stone. Then, for four iterations, positions
received -1 for each adjacent location with a negative value, and received +1 for
each adjacent location with a positive value. The other influence function was
based on which locations were occupied. Based on available information, then,
the program pattern matched against a database. Via scanning the board
searching for various rotations of each pattern, it would decide what the next
move should be. In order to make the program’s decision more sound, the game
was divided into stages (e.g. beginning, endgame, etc.), and only patterns
appropriate for the given stage were searched for. Some lookahead (3 moves)
was added to incorporate particular aspects of the game that require some
planning (e.g. saving/capturing strings, connecting/cutting strings, ladders, making
eyes). This program was able to defeat novices. Some other earlier programs
were also based on variations of influence functions and pattern matching, though
a number tried to account for more aspects of the game, such as attempting to
build models analogous to the way Go players structure their perception of the
game.

Crazy Stone by Rémi Coulom uses Monte-Carlo Tree Search and in 2006 began
the current trend of using algorithms from this family. The Monte-Carlo method
creates playouts, or played games with random (light playout) or heuristic-based
(heavy playout) moves. Applied to game trees, each node keeps a win rate,
remembering the number of playouts that were won from this position. As is often
desirable in Go, such analysis favors the potential of winning, regardless of the
potential margin by which the game may be won. Thus such algorithms may
often result in winning by a small margin. Crazy Stone also utilizes pattern
learning. The program MoGo, which received some early inspiration from Crazy
Stone, made headlines when it defeated a pro player in a full-scale 19x19 game
of Go on February 7th, 2008. This program uses the algorithm UTC (Upper
Confidence bounds applied to Trees) for Monte-Carlo.

There is also a commercial computer program called “Many Faces of Go” that
uses a variant of Monte-Carlo Tree Search, indicating that this can be playable
without the great computing power that MoGo had access to.

The main challenges of Go seem to be the sheer number of possible moves for
each player, as well as the issue of evaluating how “good” a given board
configuration is for a player. For example of the latter, even a beginning player
may be able to recognize the potential for a stone pattern called the ‘ladder’ and
look 40+ turns ahead to see how much it could benefit them (a very deep search
for a naive branching algorithm). Thus encoding such evaluation in a program is
not trivial.

3. PROJECT DEVELOPMENT APPROACH

3.1. Algorithm Details

The algorithm for the Go AI will be in the family of Monte-Carlo Tree Search
algorithms. As described above, this algorithm creates playouts, and evaluates
moves based on win counts at a given node in the stored tree. This algorithm
was first popularized for Go by Rémi Coulom’s Crazy Stone in 2006.

3.2. Target Platforms

3.2.1 Hardware
 XBox 360

3.2.2 Software
 C# and XNA

4. WORK PLAN

4.1.1. Project Milestone Report (Alpha Version)
A program against which a user may play a full game of Go. The interface
may be as simple as command-line entry of positions to place the stones
down on, and an ASCII representation of the current board state.

Dates:

01.21.2009 Meeting with Dr. Likhachev to discuss project concept
01.26.2009 Acquisition of basic knowledge of Go
02.02.2009 Investigation of XNA’s capabilities, bare bones C# data

structures / rules begun (should be able to play a 2 person
command line version of Go).

02.09.2009 Finished reading through background papers and those
recommended by Dr. Likhachev; final evaluation on which
algorithmic approach to take

 *Evaluation of whether Go is doable, or if a different game
should be selected

02.16.2009 Begin coding AI
02.23.2009 Pre-alpha evaluation of what is reasonable to expect by alpha

version
03.02.2009 Finished alpha version (playable)

 4.1.2. Project Final Deliverables

The final product will build on the AI from the Alpha version, and be a
program against which a user can play Go on an XBox 360.

Dates:

03.09.2009 Solidify what will be expected of final version
03.16.2009 More coding and evaluation
03.23.2009 Finished AI
03.30.2009 Preliminary user interface
04.06.2009 Playtesting user interface
04.13.2009 Testable ‘finished’ product
04.20.2009 Evaluation of product
04.27.2009 Incorporation of findings from evaluation

 4.1.3 Project timeline.

 Please see 4.1.1 and 4.1.2.

4.1.4 Gant Chart

Weeks:
01.19‐
01.26 2.02 2.09 2.16 2.23 3.02 3.09 3.16 3.23 3.3 4.06 4.13 4.2 4.27

Learning Go
XNA
Simple no‐AI game
Background Reading
Coding AI
Playtesting AI
GUI and XNA
Playtesting Game

5. REFERENCES

Learning Go:

British Go Association. “Introduction to the Game of Go.” British Go Association. URL:

http://www.britgo.org/intro/intro1.html. April 16, 2008.

Mori, Hiroki. “The Interactive Way To Go.” PlayGO.to. URL:

http://www.playgo.to/interactive/. 1997-2001.

Reiss, Michael. “Go in Five Minutes Flat.” Mick’s Computer Go Page. URL:

http://www.reiss.demon.co.uk/webgo/rules.htm. 2004.

Existing Programs and Algorithms:

“AITopics/Go.” Association for the Advancement of Artificial Intelligence. URL:

http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/Go. January 22, 2009.

 Has useful summaries and links for topics such as Crazy Stone and MoGo.

Burmeister, Jay, and Wiles, Janet. “CS-TR-339 Computer Go Tech Report.” The

University of Queensland Australia. URL:
http://www.itee.uq.edu.au/~janetw/Computer%20Go/CS-TR-339.html#3.0. 1995.

 This describes an overview of various academic implementations of Computer

Go, as well as more recent competitive ones.

CiteULike. “Group: computer-go.” CiteULike. URL:

http://www.citeulike.org/group/5884/library. January 22, 2009.

 There are 420 articles here, many of which refer to Monte-Carlo – based

techniques, and a few of which refer to genetic algorithms. Once it has been
decided which will be used as resources, those chosen articles will be listed as
individual sources.

Coulom, Rémi. “Efficient Selectivity and Back-up Operators in Monte-Carlo Tree

Search.” Rémi Coulom’s Home Page. URL:
http://remi.coulom.free.fr/CG2006/. January 22, 2009.

http://www.britgo.org/intro/intro1.html
http://www.playgo.to/interactive/
http://www.reiss.demon.co.uk/webgo/rules.htm
http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/Go
http://www.itee.uq.edu.au/~janetw/Computer Go/CS-TR-339.html#3.0
http://www.citeulike.org/group/5884/library
http://remi.coulom.free.fr/CG2006/

 This is the page for Crazy Stone, by programmer Rémi Coulom. It includes

a technical paper describing the program.

Gelly, Sylvain. “MoGo.” Sylvain Gelly’s Home Page. URL:

http://www.lri.fr/~gelly/MoGo.htm. January 22, 2009.

 Home Page of one of the programmers behind MoGo; contains links to a technical

report and other information.

Gelly, Sylvain, and Wang, Yizao. “Exploration and Exploitation in Go: UCT for Monte-

Carlo Go.” University College London. URL:
http://www.homepages.ucl.ac.uk/~ucabzhu/workshop_talks/mogoNIPSWorkshop.
pdf. December 9, 2006.

MoGo project. “MoGo: a software for the Game of Go.” URL:

http://www.lri.fr/~teytaud/mogo.html. January 22, 2009.

Home page of MoGo, which is considered to be the first program to beat a pro
player at Go.

“Monte Carlo Tree Search.” Sensei’s Library. URL:

http://senseis.xmp.net/?MonteCarloTreeSearch. September 11, 2008.

 This describes the family of algorithms used by competitive Go programs such as

Crazy Stone and MoGo.

Reiss, Mick. “Go++, the world’s strongest Go playing program.” Go++. URL:

http://www.goplusplus.com/. January 22, 2009.

This program features board sizes of 19x19, 13x13, and 9x9. It has features such
as handicaps and load/save, and has won several tournaments. It seems that at
least Reiss’ Go4++ program would require too great computational resources for
this senior project.

Shiba, Kojiro, and Mori, Kunihiko. “Detection of Go-board Contour in Real Image using

Genetic Algorithm.” IEEE Xplore. URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01491921. August 4, 2004.

 This is a report available from IEEE Xplore, originally from the 2004 SICE Annual

Conference in Sapporo.

Online Go Servers:

http://www.lri.fr/%7Egelly/MoGo.htm
http://www.homepages.ucl.ac.uk/%7Eucabzhu/workshop_talks/mogoNIPSWorkshop.pdf
http://www.homepages.ucl.ac.uk/%7Eucabzhu/workshop_talks/mogoNIPSWorkshop.pdf
http://www.lri.fr/%7Eteytaud/mogo.html
http://senseis.xmp.net/?MonteCarloTreeSearch
http://www.goplusplus.com/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01491921

IGS the Internet Go Server. URL: http://www.pandanet.co.jp/English/.

Online Go Server. URL: http://www.online-go.com/.

The KGS Go Server. URL: http://www.gokgs.com/.

Learning XNA and C#:

Dolan, Mike. “XNA: Make your own XBOX games in 10 steps.” Fierce Developer.

URL: http://www.fiercedeveloper.com/story/xbox-make-your-own-games-xna-10-
steps-diy. December 16, 2006.

Liberty, Jesse, and Xie, Donald. “Programming C# 3.0, 5th Edition.” ProQuest. URL:

http://proquest.safaribooksonline.com/9780596527433. December 20, 2007.

Microsoft Corporation. “Visual C#.” Microsoft. URL: http://msdn.microsoft.com/en-

us/library/kx37x362.aspx. 2009.

Microsoft Corporation. “Learn XNA Game Studio Express.” Microsoft. URL:

http://msdn.microsoft.com/en-us/xna/bb219593.aspx. 2009.

Omark, Jöran. “XNA Tutorial.” XNAtutorial.com. URL:

http://www.xnatutorial.com/?page_id=46. 2006.

http://www.pandanet.co.jp/English/
http://www.online-go.com/
http://www.gokgs.com/
http://www.fiercedeveloper.com/story/xbox-make-your-own-games-xna-10-steps-diy
http://www.fiercedeveloper.com/story/xbox-make-your-own-games-xna-10-steps-diy
http://proquest.safaribooksonline.com/9780596527433
http://msdn.microsoft.com/en-us/library/kx37x362.aspx
http://msdn.microsoft.com/en-us/library/kx37x362.aspx
http://msdn.microsoft.com/en-us/xna/bb219593.aspx
http://www.xnatutorial.com/?page_id=46

	PROJECT ABSTRACT
	1.1. Significance of Problem or Production/Development Need
	1.2. Technology
	1.3. Design Goals
	1.3.1 Target Audience.
	1.3.2 User goals and objectives
	1.3.3 Project features and functionality

	3. PROJECT DEVELOPMENT APPROACH
	3.1. Algorithm Details
	3.2. Target Platforms
	3.2.1 Hardware
	3.2.2 Software

