
Artificial Intelligence for Go
Kristen Ying

Advisors:

Dr. Maxim Likhachev & Dr. Norm Badler

Introduction

Algorithms

Implementation

Results
4

3

2

1

Introduction

Algorithms

Implementation

Results
4

3

2

1

What is Go?

• Go is an ancient board game, originating in China
– where it is known as weiqi – before 600 B.C. It
spread to Japan (where it is also known as Go),
to Korea as baduk, and much more recently to
Europe and America [American Go Association].

• The objective is to capture opponent stones and
surround area on the board.

Introduction
1

The Board

Introduction
1

Rules of Go

1. The board is a square 2D grid; professional games are typically
played on a board with 19 x 19 lines.

2. One player has black stones, one player has white stones. Black
takes the first turn, and the players take alternating turns placing
one stone on an intersection on the board grid.

3. A player may choose to pass, and not place any stones on the
board during their turn.

4. The game terminates when both players pass consecutively.

5. An opponent’s stone or connected group of stones is captured
(and removed from the board) when that stone / group is
completely surrounded by enemy stones. A stone/group is
surrounded when all of its liberties (adjacent free spaces) are
taken and occupied by enemy stones.

Introduction
1

Rules of Go (continued)

6. A stone may not be placed in a position that will cause it to
immediately be captured, such as on an intersection which has all
four liberties occupied by opponent stones (”no suicide” rule). The
exception to this is when doing so will capture the opponent
stones, and thus allow the stone placed this turn to remain.

7. Ko/Eternity - If, on turn n, placing a stone down on a given
intersection will result in the same board configuration as turn (n-
2) (i.e. the configuration at the end of the current player’s previous
turn), that move is illegal. Thus two players may not infinitely
alternate between the same two board configurations.

8. Seki/Mutual Life - This is when opposing groups share liberties that
neither group can fill without leading to the capture of the
group. Area left open are draw points (called “domi”).

Introduction
1

Rules of Go (continued)

9. At the end of the game, the game can be scored in one of two
ways: [1. Area scoring] - each player’s score is the number of his
stones on the board, plus the number of empty intersections
surrounded by his stones. [2. Territory scoring] - stones that are
unable to avoid capture (dead stones) are removed and added to
the opponent’s prisoners (stones capture during the game). Each
player’s score is the sum of the prisoners he has caught, plus the
number of empty intersections surrounded by his stones.

10. Various alterations can be made, such as playing on a smaller
board, or giving “handicaps” to a stronger player. To give a
handicap, the board begins with a certain number of the weaker
player’s stones in predetermined strategic points.

Introduction
1

Simple Rules, Complex Play

• Despite the very straightforward rules, many
strategies and important patterns emerge.

• Example: “Eye” patterns

– If a group has a single internal open space or “eye”,
it can be captured; the opponent may surround the
group and then fill the space.

– However, if a group has two (or more) “eyes”, the
opponent can not play in either due to the no-
suicide rule. Thus that group cannot be captured.

Introduction
1

Eyes - example

• The formation on the left could be captured if
white takes all its external liberties, and then
places a stone in the center.

• The formation on the right (two eyes) cannot be
captured.

Introduction
1

Why do people try to make Go AI?

• Because it’s challenging, and requires coders to
seek new AI board game techniques.

• Go is fun!

• Also it’s a great way to begin investigating AI for
games, as many approaches can be applied to it.

• For neuroscience: possibly, through machine
learning techniques, some insight can be gained
into how humans learn and think.

Introduction
1

Go is P-Space Hard

• Given a position on an n by n Go board, determining the
winner is polynomial-space hard. This can be proved by
reducing TQBF (a P-Space complete set) to the
“generalized geography” game, to a planar version, and
then to Go [Lichtenstein & Sipser].

• Checkers is also polynomial-space hard, and is a solved
problem [Schaeffer].

• However, the sheer magnitude of options (and for
intelligent algorithms, sheer number of possible
strategies) makes it infeasible to create even passable
novice AI with an exhaustive pure brute-force approach
on modern hardware.

• Chess is only 8x8, and a powerful minimax is feasible.

Introduction
1

Some Numbers…

• The professional sized board is 19 x19.

• Barring illegal moves, this allows for about 10171

possible ways to execute a game.

• This number is about 1081 times greater than the
believed number of elementary particles
contained in the known universe [Keim].

Introduction
1

Major Challenges

1. The sheer size of the move tree.

2. Difficulty of determining what makes a “good”
board. It is difficult to create an evaluation
function that determines how advantageous a
given board state is for a given player.

i.e. it’s difficult to prune the move tree in

conventional ways

Introduction
1

Recent Progress

• On February 7th, 2008, a computer finally beat a
pro Go player – but with a 9-stone handicap on
the human player, and with processing power
over 1000 times that of Deep Blue [Guillame].

• This program, MoGo, beat a pro player with only
a 7-stone handicap in 2009.

• It seems feasible for computers to outperform
professional Go players within the next decade
*Keim+, but they certainly aren’t there yet.

Introduction
1

Goals of this project

• Investigate Artificial Intelligence, as a potential
area of interest as a Master’s student.

• Learn XNA and C# (and begin learning Go).

• Code a two-human player game using XNA.

• Write AI for Go.

Introduction
1

Introduction and History

Algorithms

Implementation

Results
4

3

2

1

Overview

• There are a lot of ideas out there! Resources like
Sensei’s library have pages and pages of novice-
written algorithms, ideas for further research,
etc.

• There are many combinations of approaches.
For example, MoGo uses UCT, Monte-Carlo, and
pattern-based techniques.

Algorithms
2

Pattern Matching

• Albert Zobrist created one of the first (if not the
first) implementations of Go AI in 1970.

– It used one influence function, which considered
adjacent pieces, to assign values to the possible next
moves

– It also used another influence function that tried to
match patterns in a library to the board
configuration

• Simple pattern-matchers can be good initial
training programs for machine learning
techniques (e.g. Bill Newman’s Wally)

Algorithms
2

Life and Death

• A group of stones is considered “live” if it will
remain on the board.

– A group with two eyes is “live” in the strongest
sense; they can never be captured.

• Benson’s Algorithm uses this concept.

• These algorithms can be very fast.

Algorithms
2

Center vs. Edge Heuristics

• Consider strategies such as center of the board
vs. edge of the board placement.

• Also may use techniques such as calculating the
physics center of gravity of a group, and then
trying to place stones around the edge to
enclose this center of gravity [House].

Algorithms
2

Influence / Moyo

• “influence” is a long-term predictive effect; e.g. a
nearly captured stone has close to zero influence,
whereas a stone in the center of the board with
no neighbors may have high influence

• An area where a player has a lot of influence, i.e.
is likely to become their territory, is called a
framework, or moyo.

• Alistair Turnbull: if a given player tends to claim
the majority of a certain region of the board
when stones are placed randomly, this indicates
that the player has influence in that region.

Algorithms
2

Monte-Carlo

• Use of random playouts (simulations of the
game to the end) to generate an expected win
rate for each move.

– Win rate can be thought of as an estimated
likelihood of it leading to a win if that move is
played.

• CrazyStone by Rémi Coulom relies heavily on
Monte-Carlo with little hardcoded knowledge of
Go, and has performed well

Algorithms
2

Reducing the Scope of Move Search

• The challenge is to make the move search more
manageable , while retaining prediction strength

• In addition to the fairly well-known alpha-beta search,
there are algorithms that make use of a technique known
as Zobrist Hashing for more efficient search.
– This is a way to implement hash tables indexed by board

position, known as transposition tables [Wikipedia].

• Some have considered more unusual techniques like
Markov Chains [House]
– A Markov chain is a stochastic process having the Markov

property, which in this context means that the current state
captures all information that could influence future states –
which are determined by probabilistic means.

Algorithms
2

Upper Confidence Bounds for Trees

• Multi-Armed Bandit Problem
– Each legal move is an arm of a multi-armed bandit

– find the most promising looking branches, and expend more
resources exploring those

• Keep selecting children according to upper confidence
bounds, until a new ‘leaf’ is found (tree part); perform
simulations to evaluate this new leaf (random part)
– Update ancestors based on winrate

• MoGo: Use of patterns to have more meaningful Monte-
Carlo sequences
– Not using patterns to prune the tree

– Parallelization  70k simulations per move on a 13x13 board

– Also many hand-coded aspects to include various Go skills

Algorithms
2

Genetic Programming

• Mutating code and using natural selection to
evolve a program.

• John Koza has popularized a method of ensuring
that mutated programs are still syntactically
correct.

• Jeffrey Greenberg applied genetic programming
to Go

– It also had to learn the basic rules of Go

– Initial attempts did not result in strong Go players
(but the process is very interesting)

Algorithms
2

Genetic Algorithms

• Per Rutquist’s paper, “Evolving an Evaluation
Function to Play Go,” describes a way of applying
Genetic Algorithms to Go.

– It uses a vector of patterns and machine learning to
evaluate the fitness of a set of weights for the
pattern set. (Weights indicate the importance of the
pattern.)

– A genetic algorithm is used to evolve the pattern set.

• Learned to do well with training/test sets, but
doesn’t play well overall (against GnuGo).

– Scores of -80 with no training, then -20 with training.

Algorithms
2

Neural Networks

• Use of Neurons (units of strategy) with connections to
other Neurons

• Credit assignment problem in backpropagation:
– which moves get credited/blamed for a win/loss?

• Richards et. al. designed a system that evolves two
populations: one of Neurons and one of Blueprints
– Blueprints use neurons to form larger strategies.

– Uses SANE (Symbiotic Adaptive Neuro-Evolution).

– Neurons receive credit/blame based on the multiple blueprints
they are used in.

• Learned to defeat Wally on a 5x5 board in 20
generations, but doesn’t scale to 19x19 reasonably.

Algorithms
2

Deciding what to implement…

• Main Goals:

– Investigate AI as a potential field of further study as
a Master’s student

– learn XNA, C#, and Go to make a Go AI

• Approach:

– Read about as many approaches as possible.

– Make some toy AIs to build the core program
around.

– Implement UCT- and Monte-Carlo-based approach,
because MoGo has had great success with these.

– Combine with a distance function to predict the
“advantageousness” (expected win rate) for boards.

Algorithms
2

Introduction

Algorithms

Implementation

Results
4

3

2

1

Code Organization

• Coded up a framework to have AI deathmatches,
with visuals using XNA (also can have two-human
player games that merely enforce the rules).

• White-Player and Black-Player each have an array of
the classes that inherit from GoAi.

– AI implementations override TakeTurn (board)

• The active AIs for each player are indicated by an
index value.

• Core framework guarantees that there is at least one
legal move left when passing control to the AI.

• All AIs guarantee their chosen move is always legal.

Implementation
3

Tools Used

• C#

• XNA

– XNA Creators Club tutorials and models

– The O’Reilly book

– PrimitiveBatch code

• .SGF files from real Go games

• GoTraxx parser

Implementation
3

XNA

• XNA = XNA’s Not an Acronym

• Framework for hooking into graphics, user input,
etc. on Windows or XBox360

– Trivial to switch between platforms

• Useful classes to inherit from

– Game

– GameComponent

• Many powerful systems for download, e.g.
Synapse Gaming’s “SunBurn”

Implementation
3

Visuals

• 2D Viewer

– Allows players to place stones on the board when
there is a human player

– Sprite-based elements for the board and stones

– Uses PrimitiveBatch, downloaded from Microsoft to
makes lines, etc. much more intuitive

• 3D Viewer

– Just for fun

– Intended for watching AI deathmatches

– Camera viewing board and stone models

Implementation
3

2D Viewer

(Image)

Implementation
3

3D Viewer

Implementation
3

SGF

• SGF = Smart Game Format

• Used Phil Garcia’s SGF file parser, written for his
program GoTraxx
• http://www.thinkedge.com/blogengine/page/GoTraxx.aspx

• Translated the result into Library records

• Phil Garcia was very helpful via email 

Implementation
3

Simple Game Format

• Excerpt:

(;W[dd]N[W d16]C[Variation C is better.](;B[pp]N[B q4]) (;B[dp]N[B d4]) (;B[pq]N[B
q3]) (;B[oq]N[B p3])) (;W[dp]N[W d4]) (;W[pp]N[W q4]) (;W[cc]N[W c17]) (;W[cq]N[W
c3]) (;W[qq]N[W r3])) (;B[qr]N[Time limits, captures & move numbers]
BL[120.0]C[Black time left: 120 sec];W[rr] WL[300]C[White time left: 300 sec];B[rq]
BL[105.6]OB[10]C[Black time left: 105.6 sec Black stones left (in this byo-yomi period):
10];W[qq] WL[200]OW[2]C[White time left: 200 sec White stones left: 2];B[sr]
BL[87.00]OB[9]C[Black time left: 87 sec Black stones left: 9];W[qs]
WL[13.20]OW[1]C[White time left: 13.2 sec White stones left: 1];B[rs] C[One white
stone at s2 captured];W[ps];B[pr];W[or] MN[2]C[Set move number to 2];B[os] C[Two
white stones captured (at q1 & r1)] ;MN[112]W[pq]C[Set move number to
112];B[sq];W[rp];B[ps] ;W[ns];B[ss];W[nr] ;B[rr];W[sp];B[qs]C[Suicide move (all B
stones get captured)]))

• Powerful but at first glance complicated tree-based representation.

Implementation
3

Board Library

• Generate if needed, serializing to save to a file

– In the event that the library is not generated, just
deserialize the saved file

• If generating, reads in all the files currently in a
specified directory

• Parses each read file using Phil Garcia’s parser
from GoTraxx.

• Saves records of type LibraryBoard, storing a
board configuration in the format used by the AI,
and an empirically calculated win rate.

Implementation
3

Toy AIs

• Random AI

– Exactly what it sounds like…

• Crawler AI

– Proceeds left to right, down the board, filling in
adjacent spaces

• Novice AI

– tries to maximize the liberties of its next piece

• Useful for testing the AI system (they’re very fast on
all permitted board sizes), and gaining an intuition as
to what works

Implementation
3

Greedy AI

• Decides based only on the predicted results of its current
turn; no lookahead.

• If it is possible for it to capture an opponent piece, it
does so – capturing as many stones as possible.

• Otherwise, it looks for the largest group of friendly
stones, and increases its liberties as much as possible

• Heuristics inspired by user “Hologor” of Sensei’s Library,
and his “crawler” AI.

Implementation
3

Greedy Score AI

• Similar to Greedy AI.

• Makes a greedy choice, taking the move that will
maximize its score on the immediately resulting
board.

Implementation
3

Naïve Monte-Carlo AI

• For each legal move, performs a constant
number of random playouts.

– These game simulations run until the game is over

• For each move, a win rate is calculated based on
the playouts.

• The AI takes the move with the highest
empirically calculated expected win rate.

Implementation
3

Heavy Monte-Carlo AI

• Also uses Monte-Carlo technique without UCT.

• Playouts are made with heuristic guided moves
instead of random ones.

– This is called a “heavy” playout.

– The heuristics used were those that were most
successful in the Greedy algorithms used.

Implementation
3

Distance AI

• Searches n (friendly) turns deep move tree

• Uses a distance function to find similar boards in
the library

• Uses a weighted average of the similar library
boards’ previously calculated win rates

– (weighted by distance from this board)

• The move that resulted in the board with the
highest score is taken.

Implementation
3

Monte-Carlo / UCT AI

From MoGo paper:

Implementation
3

Monte-Carlo / UCT AI

• MoGo also uses patterns, to improve the meaningfulness
of its random playouts at the leaves
– MoGo seems to be applying stored patterns locally, to find

moves that will create patterns close to the current area of the
board, rather than applying pattern-matching to arbitrary areas

– It only considers moves close to the most recently played move

• The Monte-Carlo / UCT AI in this project does not use
patterns, and in this sense is closer to CrazyStone or
earlier versions of MoGo.
– It seems that applying patterns without great amounts of trial

and error can do more harm than good.

Implementation
3

Genetic AI

• Beyond the scope of this project, and just for personal
entertainment. (Not finished…)

• Loosely based on the paper by Per Rutquist.
– Also borrows UCT techniques, but uses the evolved evaluation

function to help decide which branches to investigate further.

– A deathmatch between this and Distance UCT AI could be
interesting.

• Potential further investigation: using a UCT-inspired AI,
but investigating the branches with the best scores from
the Distance evaluation, and the branches with the best
scores from the Genetic evaluation.

Implementation
3

Introduction

Algorithms

Implementation

Results
4

3

2

1

Human Player

Results
4

Example of Testing with Toy AIs

• Random vs. Crawler

Results
4

Greedy AI

• Randomized version (but nonrandomized version
had similar results).
– Usually pretty good at not removing its own eyes, as that

would not be adding liberties.

– This set of greedy heuristics leads to behavior that helps box in
sections of the board.

• Always very fast on the range of legal board sizes
– Strategy is not heavily dependent on board size

Results
4

Greedy AI

• Initially beat all the currently implemented AIs,
even Naïve Monte-Carlo.

• When more complex AIs are given inadequate
resources (number of game simulations per
move, or library resources) this one wins

Results
4

Greedy AI vs. Random AI

Results
4

Greedy Score AI

• Did not do as well as Greedy AI

• Without lookahead, it lacked the effective
“boxing in” behavior that Greedy AI achieved
through its greedy novice-like heuristics.

Results
4

Greedy AI vs. Naïve Monte-Carlo

• During initial trials, Greedy AI / Greedy Random
AI defeated Naïve Monte-Carlo AI consistently.

• Considered simulate moves with the same
greedy algorithm, but that’s cheating…

• Naïve Monte-Carlo AI did not have adequate
resources to compete with Greedy AI on large
boards.

Results
4

Naïve Monte-Carlo AI

• Great on small boards with high number of sims
per move .

– e.g. 100+ sims per legal move on a 5x5 board

• Doesn’t scale well.

• Random moves on a Go board actually work
decently well to determine influence / moyo,
especially since there is only one way to move –
namely placing down a stone.

Results
4

Naïve Monte-Carlo vs. Greedy

Results
4

Heavy Monte-Carlo

• Even 100 simulations per legal move on a 4x4
board was very slow

• Didn’t do noticeably better than Naïve Monte-
Carlo against Random, at least on the 4x4 board.

Results
4

Distance AI

• Very dependent on the quality of the library

– Issues of having enough such that there are always
enough boards very similar to the current board

• Distance function requires a lot of hand-editing

– Details such as how to deal with boards in the library
that are of a different size.

• With it’s current library, it seems only slightly
better than Random

– A bad library could feasibly make it play a strategy
that is worse than random moves

Results
4

Distance AI

Results
4

Monte-Carlo / UCT

• Still fairly slow when allowing high numbers of
simulations

• Shows signs of strategic moves, as Naïve Monte-
Carlo does – seems to have preserved predicitve
power

• MoGo has been allowed 12 seconds per move
decision, with huge computing resources

Results
4

Monte-Carlo / UCT

•

Results
4

Monte-Carlo / UCT

•

Results
4

Monte-Carlo / UCT

•

Results
4

Monte-Carlo / UCT

•

Results
4

Future Direction

• (Next week) Deciding how much control to give
the user, adding a UI based on this, and putting
it on the XBox360. (Lua?)

– Code has been designed for AIs to be swapped out
by changing an int, etc.

– Also tweaking AI, and adding some Monte-Carlo
features to Distance AI.

• Creating a more space efficient tree.

• More work with Genetic AI.

• Looking into applying patterns locally, as done in
MoGo, and alternative ways of reducing the
scope of the move search.

Results
4

Summary

• Findings seemed similar to other novice Go
players coding AI, found on Sensei’s library

– Greedy AI was inspired by a poster there, saying how
his simple heuristic-based AI was stronger than an AI
with lookahead.

• Monte-Carlo performs well, when given enough
resources, as expected.

• UCT with MC from the MoGo paper provides
some speedup/scalability, but would likely need
the further optimization and hardcoded skill
found in MoGo to be great.

Results
4

Take-Home Points

• Monte-Carlo techniques are well suited to the
nature of Go, as it allows complex patterns to
emerge on their own

• Monte-Carlo alone doesn’t scale well

• MC / UCT is the most competitive approach, as
this is a good solution to the Multi-Armed Bandit
problem, when carefully optimized

Results
4

Project

Goals

C#

XNA
Artificial

Intelligence

Computer

Go

Results
4

Accomplishments

Thank You!

