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ABSTRACT 

Metaballs are a useful technique to model blobby surfaces.  Because metaballs define an implicit surface, render-
ing is difficult.  We seek to render the surface directly via ray-casting, to precisely locate the isosurfaces and pre-
serve the concise representation of the surface.  To perform this rendering at interactive rates on dynamic data, we 
will use acceleration structures for fast surface calculation, and will implement it in the CUDA framework using 
Nvidia GPU's.   
 
Project Blog: http://csgrendering.blogspot.com/  

 

1. INTRODUCTION 

 
 Metaballs are a modeling technique appropriate 
for blobby surfaces such as liquid droplets, covalent bonds.  
A surface is created by a summation of density functions 
centered at points.  Each function is roughly Gaussian in 
shape, and for efficiency usually has finite support, mean-
ing that it is nonzero only in some limited area.  Overlap-
ping density functions combine additively.  The surface is 
defined as the isosurface of the density function at some 
given threshold.  Thus, as two metaballs move together, 
their density functions overlap and sum together until a 
bridge is formed. 
 While metaballs are an intuitive modeling 
method for these types of surfaces, rendering is difficult 
because the metaballs define an implicit surface.  Various 
approaches to rendering include tessellation of the surface 
into polygons and voxelization.   
 However, these methods introduce an additional 
level of sampling error, and also destroy the original con-
cise representation of the surface.  Each metaball might 
only require a position, amplitude, and radius.  However, 
to smoothly render a surface made of thousands of meta-
balls could require hundreds of thousands of polygons.  For 
interactive rendering on modern processors, where com-
pute power is plentiful but memory bandwidth is con-
strained, this is particularly a problem.  We thus seek to 
directly render the isosurfaces via numeric root-finding 
methods.  This process will be accelerated using Nvidia 
GPUs. 
 

1.1 Design Goals 

 The goal will be interactive visualization of 
simulation data.  These could be used for attractive presen-

tations of fluid or particle data.  The system will generate 
smooth and accurate renderings at interactive rates. 

1.2 Projects Features and Functionality 

 Our system will take as input frames of anima-
tion consisting of “particle soup”.  That is, an unstructured 
array of metaball positions, radii, and amplitudes.  We will 
also take as secondary input rendering parameters such as 
camera position and orientation, clipping planes, resolu-
tion, and sampling, and shading parameters such as shad-
ing model and corresponding colors or maps. 
 The primary output will be a image buffer con-
taining a rendered frame of animation, suitable for imme-
diate display via OpenGL or saving to disk.  Other outputs 
might include additional information buffers such as depth 
or surface normals. 
 The primary thing of note here would be we plan 
to take unstructured data per frame, and hide any accelera-
tion structures internally.  Because our target application of 
particles in motion has no rigid organization and may 
change rapidly and unpredictably, we saw little benefit in 
maintaining frame-to-frame coherence.  Instead, we are 
aiming for fully general acceleration, starting from scratch 
each frame. 

2. RELATED WORK 

Interactive ray tracing has become a recent field of interest, 
with interactive ray tracing of surfaces, as opposed to tri-
angles, as a subfield of that.  Research has used both the 
CPU and GPU as platforms.  The different platforms share 
some connections, but also differences due to the varying 
architectures.  With GPU work, a distinction is also draw 
on whether the authors hijacked the rendering pipeline 
using shading languages or used a higher-level framework 
such as CUDA. 
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2.1 Interactive Ray Tracing 

 Several innovations from this field are applicable 
towards our work.  These include research on acceleration 
structures and on optimizing ray tracing to exploit coher-
ency and architectural details. 

 [WSBW01] discusses packet-based raytracing.  
This technique exploits coherence between neighboring 
rays and maps well to SIMD architectures.  They allow 
optimizations, memory accesses, and culling to be amor-
tized across packets of rays. 
    Rendering of metaballs can be accelerated by 
building an accelerating structure using bounding spheres 
of the metaballs as the primitives.  [WIKK06] discusses the 
uniform grid data structure to accelerate animated scenes.  
While the provided acceleration is generally worse than 
adaptive data structures, the uniform grid is simple and 
efficient to construct, even interactively.  It is also well-
suited to dynamic particle data, which may exhibit little 
exploitable hierarchy or structure.  [IDC09] presents an 
simple and fast algorithm to construct uniform grids on 
modern GPUs. 
 Other acceleration structures are possible to con-
struct and traverse on the GPU.  [ZHWG08] performs con-
struction of Kd-tree's for ray tracing acceleration on the 
GPU, however with considerable complexity and a high 
runtime cost.  [GPSS07] develop a fast BVH traversal al-
gorithm targeted towards Nvidia GPU's.  It maintains a 
traversal stack per-packet.   
 
  

 
2.2 Interactive Rendering of Metaballs 
 
   Several researchers have approached rendering of meta-
balls on the GPU.   
 [KSN08] uses ray casting on the GPU to evaluate 
the isosurface per-pixel.  They find affecting metaballs 
along each ray by performing depth-peeling of the bound-
ing spheres, then intersect via root-finding with Bezier 
clipping. 
 [GPBP09] uses BVH's to ray-trace metaballs 
with several bounces on the GPU at interactive rates.  
However, they build the BVH on the CPU and then 
download it to the GPU, a potential bottleneck.  They de-
scribe problems with efficiency due to dense groups of 
metaballs. 
 

2.3 Coherent Ray Tracing 
 If full ray-tracing is employed, as opposed to 
ray-casting, steps have to be taken to rebuild coherent 
packets.   [MMA07] use heuristics to rebuild packets with 
rays generated across multiple levels of ray tracing.  This 
requires significant global communication, and the balanc-
ing of the communication overhead vs the gained perform-
ance. 

 

3. PROJECT PROPOSAL 

 We seek to directly render isosurfaces via ray 
casting.  Given an unstructured set of metaballs each 
frame, we will construct an acceleration stucture, then 
traverse it and intersect with leaves until an intersection is 
found. 

3.1 Acceleration Structure 

 We thinking that the best choice of acceleration 
structure for this problem is the uniform grid.  Unlike adap-
tive structures, it is simple and efficient to construct and 
inexpensive to traverse.  While in general it provides infe-
rior culling, it is well-suited to unstructured and scattered 
data such as particle simulations.  All metaballs that over-
lap a grid cell at all need to be included so their influence 
can be taken into account.  This is an efficiency factor that 
pushes towards larger cells, to minimize duplication. 
 Once the acceleration structure is constructed, we 
will traverse it via packets of rays.  The packets of rays 
then visit a series of cells containing metaballs in rough 
front to back order.  [WIKK*06] traverses the grid by 
“slices” in the dominant direction of the packet, so while 
intersections may be out of order within a slice, between 
slices they are ordered.   

 
3.2 Intersection 
 Each cell we traverse, we intersect all rays with 
the metaballs present in the cell to find the best intersec-
tion.  We take the closest intersection for each metaball 
over each slice if there is more than one.  Once all rays in a 
packet have terminated, the packet is finished.  Once all 
packets are complete, we move to shading.  
 

3.4 Shading and Filtering 
 Our initial version will use a basic shading 
model, with additional configuration added with time per-
mitting.  Blinn-phong shading with hard shadows and envi-
ronment mapping will probably suffice for the initial im-
plementation.  One possibility for programmable shading if 
recursive ray tracing is not used is to use deferred shading 
with a shading language such as Cg.   
 Filtering and antialiasing, if employed, can occur 
in a final blend after shading.  Any jittering or displace-
ment of samples must occur during ray generation. 

 

3.5 Implementation as Kernels 
 
 We plan to implement this renderer using the 
CUDA framework on Nvidia GPU's.  We plan to divide the 
rendering into a number of separable kernels.  To simplify 
implementation, we have separated the components of the 
renderer as much as possible.  Each will block until all 
threads have completed.  It may be possible to get better 
performance and suffer less from divergent behavior if we 
used uber-kernels that incorporate all parts of the rendering 
and dynamic load balancing techniques such as work 
queues with persistent threads.  However, they would com-
plicate the implementation significantly and would proba-
bly not be a good idea for the first version. 

 



 

 The first is a ray generation kernel, which takes 
in the rendering parameters and generates a grid of rays 
sampling the scene that are grouped into packets.  A sepa-
rate kernel for ray generation allows effects like random 
sampling to be plugged in as modular components.  An-
tialiasing if used is a combination between ray generation 
and an additional filtering pass after shading. 
 After generation we begin a cycle of traversal 
and intersection.  In general, we will use a CUDA thread 
per ray, and a block of threads per packet.  The traversal 
kernel advances each packet through the grid slice by slice 
until it encounters a non-empty slice, at which point it 
examines each intersected cell in the slice.  Frustum-
culling per packet can be used in an initial pass for large 
granularity culling.  For this culling, each packet is repre-
sented by a thread. 
 The intersection kernel processes each packet of 
rays vs. the cell that the packet is currently visiting.   
 The core intersection kernel is a key component 
for the performance of the overall system, and we are con-
sidering a number of different implementations.  All im-
plementations use one CUDA thread per ray, and a block 
of threads for one packet.  Memory access to the metaballs 
for a cell is amortized across the block since all rays in a 
packet traverse the cell together. 
 The first routine we developed is probably the 
worst. Its is based on the methods described in [NN03] and 
It involves segmenting the ray along its length by the me-
taballs affecting each segment. A Bezier approximation for 
each segment is then generated, and intersected with via 
robust Bezier clipping. A key problem with this approach 
is that the searching and sorting involved are highly diver-
gent between rays. Also, the segmentation is dependent on 
not only the number but the arrangement of the objects in 
the scene, making the runtime of this technique dependent 
on the depth complexity of the scene. This technique could 
overrun fixed size buffers and fail in the case of complex 
arrangements. It has the advantage that is processes inter-
sections in front-to-back order, allowing for early termina-
tion, and that it uses a numerically robust root-finding 
technique. 
 The second routine developed is probably the 
most novel. It involves choosing a limited set of basis func-
tions to represent the density along each ray. For each me-
taball, its density function along the ray is found and pro-
jected onto the basis via a linear transformation in function 
space. The limited set of basis functions means that many 
coefficients have to be dropped. The coefficients for each 
metaball are summed to form a vector of coefficients that 
represents approximately the density function along the 
ray. Intersection is then performed against this function.  
 There are a number of mathematical unknowns 
behind this routine.  The key choices are the choice of 
basis and the choice of density function. The basis must 
represent the range of possible density functions well with 
a small number of coefficients. The density functions and 
the basis must be chosen carefully so that projection can be 
performed elegantly and efficiently (general projection 
onto a function involves the integral of the product along 
the length, to be avoided at all cost). Finally, the final basis 
function must be efficient to intersect against (ie not Fou-
rier series). 

 In terms of precise implementations, this ap-
proach has several advantages in that it requires constant 

memory per ray, to store the vector of coefficients, and 
time complexity in the intersection routine that depends on 
the complexity of the density function, not directly on the 
number of intersected particles. If a basis with finite local 
support is used, such as Bsplines, it also allows the ray to 
be processed in front-to-back order allowing for early ter-
mination. A downside is that per-ray constant memory cost 
is significant, to store the necessary coefficient vector.  
Half-precision could probably be used to save space. 

 
 The third approach is the simplest and most 
memory efficient. It also requires the most computation. 
An iterative root-finding technique such as Newton-
Raphson or the secant method is used, and to evaluate the 
function/its derivative when needed, each density function 
is evaluated and accumulated. This approach needs only a 
small constant working set of memory, just enough to hold 
the current and previous iteration of values, and signifi-
cantly less than the method above. 
 A disadvantage to this approach is that all meta-
balls for a cell must remain in shared memory for the entire 
procedure, unless they are loaded from global memory 
each time.  The second method can stream the metaballs 
through. 
 
 All of these approaches can be optimized for 
sparse cells by using bounding spheres. Any rays that miss 
the bounding spheres of all metaballs can be immediately 
discarded. If any rays hit a single metaball alone, an inter-
section test can be performed against the simple smaller 
sphere than a metaball forms alone. 

 
 Once all rays in all kernels have intersected a 
metaball, we move to a shading kernel.  Information neces-
sary for shading such as surface normals is passed on from 
the intersection kernel.  Per-particle attributes such as tem-
perature or velocity can also be interpolated using percent-
age contributation towards the density function as a blend-
ing weight. 
 For our initial implementation, shading will 
probably be performed in a hard-coded CUDA kernel.  A 
promising option for the final implementation is deferred 
shading using Cg.   
 The final result of this rendering will be an 
OpenGl buffer.  This can be copied back to main memory 
for storage, displayed directly, or composited with a ren-
dered polygonal scene using depth maps and alpha blend-
ing. 
 
 

3.6  Foreseen Challenges 
 Divergent rays and packets are a dangerous prob-
lem since they could delay the entire rendering. 
 At the moment we plan to perform ray-casting, 
rather than full ray tracing, with secondary bounces only 
for shadowing.  A main reason for this is that secondary 
rays in general are less coherent that primary rays, and may 
form much more divergent packets. 
 The behavior of all three given intersection ker-
nels near very dense regions of space, such as those that 
could occur in fluid simulations, is worrisome.  A very 
tight adaptive structure, such as an aggressively fit Kd-tree, 

 



 

could alleviate this problem. Even that approach doesn't 
solve the problem of many many overlapping metaballs. 
 

 

3.7 Target Platforms 

 We will implement this using the CUDA frame-
work on Nvidia GPU's, with OpenGL for display and C++ 
for client-side wrappers. 

3.8 Evaluation Criteria 

 This work can be evaluated on a number of di-
mensions compared to other work.  These include quality, 
performance, and scalability of rendering, as compared to 
other implementations on both the GPU and CPU.   
 Quality of rendering is mostly relevant as com-
pared to completely different approaches to rendering me-
taballs, including image-space methods, tessellation, or 
point-based methods.  Ideally we will more precisely cap-
ture curvature and fine detail. 
 Performance and scalability can be best meas-
ured as frame rate vs. number of particles at several differ-
ent resolutions, and with different shading complexities on 
sample animation sequences.  Multiple resolutions/shading 
models are important because packets cause runtime cost 
to scale sublinearly with the number of rays cast due to 
supersampling or increased resolution.  This is because 
increased ray density leads to more coherent packets and 
more efficient traversals. 
 These performance curves should be compared 
vs the results in the best known CPU implementations as 
well as the comparable results in [GPBP09] or [KSN08].   

 An benefit of our design is that the traversal and 
intersection kernels can be separated, tested, and evaluated 
quite independently.  The traversal kernel can be plugged 
into a “dummy” intersection kernel which merely inter-
sects with bounding spheres to make sure that the accelera-
tion structure is being correctly traversed.  The intersection 
kernel meanwhile can be tested by casting all rays into and 
rendering the results merely from one cell with several 
metaballs. 

 

4. RESEARCH TIMELINE 

 We would like to submit the research for publi-
cation by April 1st.  This means that, if we give a minimum 
of two weeks to write a paper and collect results.  This 
means that the implementation must absolutely be finished 
by March 15th.  We want to have all functionality in place 
and working by the Alpha Review on March 1st.  This 
gives us two weeks to optimize and bug-fix before the 
drop-dead completion date.  If the project should be mostly 
complete by March 1st and has an estimated time of 130 
hours, then in the intervening 6 weeks we'll need to put in 
roughly 15-20 hrs/week.   

 Please see the attached Gantt chart for a more 
exact decomposition of tasks. 

 
 

Project Milestone Report (Alpha Version) 
• All projected functionality included (no new features 

beyond here) 
• Renders of particles in animation 
• Rough C++ wrapper 
 

 
Project Final Deliverables 
• All projected functionality battle-tested 
• Performance bottlenecks isolated and fixed 
• Performance results under various loads 
• Renders with varying shading models of varying parti-

cle data 
• Improved wrappers for use as a visualization library 

 

Project Future Tasks 
• Add secondary bounces for true reflection and refrac-

tion. 
• Explore different acceleration structures and real-time 

construction algorithms 
•  Add full-featured material management 
• Use persistent threads with a work queue for dynamic 

load balancing 
Use stream filtering techniques to rebuild packets out • 

• erization pipeline, 

 
 

of multiple levels of the ray hierarchy 
 Better interface with traditional rast
allowing ray-cast metaballs to be embedded in tradition-
ally rendered polygonal scenes 

 

5. Method 

6. RESULTS 

7. CONCLUSIONS and FUTURE WORK 

 
PPENDIX 

ons 
 se overlapping regions remain a prob-

m for a

One possibility would be detecting such preproc-

-
ticle/fluid/molecular visualization, for example surface 
modeling? 

A
A. Questi

Very den
le ll of our intersection kernels.  A special way to 
handle such regions could make our performance more 
robust.   
 
essing.  Highly dense regions could then be represented 
with a more concise description; for example, very close 
metaballs could be merged together and their densities 
added.  However, this could introduce popping between 
frames, as this alternative description flickers on and off. 
 Should we target other applications besides par

 



 

 What shading features do you place priority on 
for high-quality pleasing imagery?  (Does not necessarily 
need to be “realistic”) 

 
 

 Do you have any different ideas for intersection 
kernels or ideas to make option 2 feasible? 
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Jan 15 to 22

Gather Results and write-up

Jan 22 to 
29

Jan 29 to 
Feb 5

Feb 5 to 
Feb 12

Feb 12 to 
Feb 19

Feb 19 to 
Feb 26

Feb 26 to 
Mar 5

Mar 5 to 
Mar 12

Mar 12 to 
Mar 19

Mar 19 to 
Mar 26

Mar 26 to 
April 2

April 2 to 
April 9

April 9 to 
April 16

April 16 to 
April 23

April 23 to 
April 30

Complete study of intersection 
routines and acceleration 
structures

Implement initial intersection 
routine
Implement initial acceleration 
structure construction and 
traversal

Integrate, debug, and develop full 
pipeline including ray generation 
and shading

Define external wrappers and 
support application, including 
driving particle data

Complete Implementation and 
Optimize

Introduce Secondary Bounces 
and full-featured material 
management
Improve wrappers use as 
visualization library

 
 
 
 
 
 
 
 
Figure 1: Gantt Chart.  April 1st is our deadline for publication, with time after that being spent on refining our application.   
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