
CIS 496 / EAS 499 Senior Project
Project Proposal Specification
Instructors: Norman I. Badler and Joseph T. Kider. Jr.

Interactive and Scalable Ray-Casting of
Metaballs on the GPU

Jon McCaffrey

Advisor: Dr. Norman Badler

University of Pennsylvania

ABSTRACT

Metaballs are a useful technique to model blobby surfaces. Because metaballs define an implicit surface, render-
ing is difficult. We seek to render the surface directly via ray-casting, to precisely locate the isosurfaces and pre-
serve the concise representation of the surface. To perform this rendering at interactive rates on dynamic data, we
will use acceleration structures for fast surface calculation, and will implement it in the CUDA framework using
Nvidia GPU's.

Project Blog: http://csgrendering.blogspot.com/

1. INTRODUCTION

 Metaballs are a modeling technique appropriate
for blobby surfaces such as liquid droplets, covalent bonds.
A surface is created by a summation of density functions
centered at points. Each function is roughly Gaussian in
shape, and for efficiency usually has finite support, mean-
ing that it is nonzero only in some limited area. Overlap-
ping density functions combine additively. The surface is
defined as the isosurface of the density function at some
given threshold. Thus, as two metaballs move together,
their density functions overlap and sum together until a
bridge is formed.
 While metaballs are an intuitive modeling
method for these types of surfaces, rendering is difficult
because the metaballs define an implicit surface. Various
approaches to rendering include tessellation of the surface
into polygons and voxelization.
 However, these methods introduce an additional
level of sampling error, and also destroy the original con-
cise representation of the surface. Each metaball might
only require a position, amplitude, and radius. However,
to smoothly render a surface made of thousands of meta-
balls could require hundreds of thousands of polygons. For
interactive rendering on modern processors, where com-
pute power is plentiful but memory bandwidth is con-
strained, this is particularly a problem. We thus seek to
directly render the isosurfaces via numeric root-finding
methods. This process will be accelerated using Nvidia
GPUs.

1.1 Design Goals

 The goal will be interactive visualization of
simulation data. These could be used for attractive presen-

tations of fluid or particle data. The system will generate
smooth and accurate renderings at interactive rates.

1.2 Projects Features and Functionality

 Our system will take as input frames of anima-
tion consisting of “particle soup”. That is, an unstructured
array of metaball positions, radii, and amplitudes. We will
also take as secondary input rendering parameters such as
camera position and orientation, clipping planes, resolu-
tion, and sampling, and shading parameters such as shad-
ing model and corresponding colors or maps.
 The primary output will be a image buffer con-
taining a rendered frame of animation, suitable for imme-
diate display via OpenGL or saving to disk. Other outputs
might include additional information buffers such as depth
or surface normals.
 The primary thing of note here would be we plan
to take unstructured data per frame, and hide any accelera-
tion structures internally. Because our target application of
particles in motion has no rigid organization and may
change rapidly and unpredictably, we saw little benefit in
maintaining frame-to-frame coherence. Instead, we are
aiming for fully general acceleration, starting from scratch
each frame.

2. RELATED WORK

Interactive ray tracing has become a recent field of interest,
with interactive ray tracing of surfaces, as opposed to tri-
angles, as a subfield of that. Research has used both the
CPU and GPU as platforms. The different platforms share
some connections, but also differences due to the varying
architectures. With GPU work, a distinction is also draw
on whether the authors hijacked the rendering pipeline
using shading languages or used a higher-level framework
such as CUDA.

CIS 496/EAS499 Senior Design Project

http://csgrendering.blogspot.com/

2.1 Interactive Ray Tracing

 Several innovations from this field are applicable
towards our work. These include research on acceleration
structures and on optimizing ray tracing to exploit coher-
ency and architectural details.

 [WSBW01] discusses packet-based raytracing.
This technique exploits coherence between neighboring
rays and maps well to SIMD architectures. They allow
optimizations, memory accesses, and culling to be amor-
tized across packets of rays.
 Rendering of metaballs can be accelerated by
building an accelerating structure using bounding spheres
of the metaballs as the primitives. [WIKK06] discusses the
uniform grid data structure to accelerate animated scenes.
While the provided acceleration is generally worse than
adaptive data structures, the uniform grid is simple and
efficient to construct, even interactively. It is also well-
suited to dynamic particle data, which may exhibit little
exploitable hierarchy or structure. [IDC09] presents an
simple and fast algorithm to construct uniform grids on
modern GPUs.
 Other acceleration structures are possible to con-
struct and traverse on the GPU. [ZHWG08] performs con-
struction of Kd-tree's for ray tracing acceleration on the
GPU, however with considerable complexity and a high
runtime cost. [GPSS07] develop a fast BVH traversal al-
gorithm targeted towards Nvidia GPU's. It maintains a
traversal stack per-packet.

2.2 Interactive Rendering of Metaballs

 Several researchers have approached rendering of meta-
balls on the GPU.
 [KSN08] uses ray casting on the GPU to evaluate
the isosurface per-pixel. They find affecting metaballs
along each ray by performing depth-peeling of the bound-
ing spheres, then intersect via root-finding with Bezier
clipping.
 [GPBP09] uses BVH's to ray-trace metaballs
with several bounces on the GPU at interactive rates.
However, they build the BVH on the CPU and then
download it to the GPU, a potential bottleneck. They de-
scribe problems with efficiency due to dense groups of
metaballs.

2.3 Coherent Ray Tracing
 If full ray-tracing is employed, as opposed to
ray-casting, steps have to be taken to rebuild coherent
packets. [MMA07] use heuristics to rebuild packets with
rays generated across multiple levels of ray tracing. This
requires significant global communication, and the balanc-
ing of the communication overhead vs the gained perform-
ance.

3. PROJECT PROPOSAL

 We seek to directly render isosurfaces via ray
casting. Given an unstructured set of metaballs each
frame, we will construct an acceleration stucture, then
traverse it and intersect with leaves until an intersection is
found.

3.1 Acceleration Structure

 We thinking that the best choice of acceleration
structure for this problem is the uniform grid. Unlike adap-
tive structures, it is simple and efficient to construct and
inexpensive to traverse. While in general it provides infe-
rior culling, it is well-suited to unstructured and scattered
data such as particle simulations. All metaballs that over-
lap a grid cell at all need to be included so their influence
can be taken into account. This is an efficiency factor that
pushes towards larger cells, to minimize duplication.
 Once the acceleration structure is constructed, we
will traverse it via packets of rays. The packets of rays
then visit a series of cells containing metaballs in rough
front to back order. [WIKK*06] traverses the grid by
“slices” in the dominant direction of the packet, so while
intersections may be out of order within a slice, between
slices they are ordered.

3.2 Intersection
 Each cell we traverse, we intersect all rays with
the metaballs present in the cell to find the best intersec-
tion. We take the closest intersection for each metaball
over each slice if there is more than one. Once all rays in a
packet have terminated, the packet is finished. Once all
packets are complete, we move to shading.

3.4 Shading and Filtering
 Our initial version will use a basic shading
model, with additional configuration added with time per-
mitting. Blinn-phong shading with hard shadows and envi-
ronment mapping will probably suffice for the initial im-
plementation. One possibility for programmable shading if
recursive ray tracing is not used is to use deferred shading
with a shading language such as Cg.
 Filtering and antialiasing, if employed, can occur
in a final blend after shading. Any jittering or displace-
ment of samples must occur during ray generation.

3.5 Implementation as Kernels

 We plan to implement this renderer using the
CUDA framework on Nvidia GPU's. We plan to divide the
rendering into a number of separable kernels. To simplify
implementation, we have separated the components of the
renderer as much as possible. Each will block until all
threads have completed. It may be possible to get better
performance and suffer less from divergent behavior if we
used uber-kernels that incorporate all parts of the rendering
and dynamic load balancing techniques such as work
queues with persistent threads. However, they would com-
plicate the implementation significantly and would proba-
bly not be a good idea for the first version.

 The first is a ray generation kernel, which takes
in the rendering parameters and generates a grid of rays
sampling the scene that are grouped into packets. A sepa-
rate kernel for ray generation allows effects like random
sampling to be plugged in as modular components. An-
tialiasing if used is a combination between ray generation
and an additional filtering pass after shading.
 After generation we begin a cycle of traversal
and intersection. In general, we will use a CUDA thread
per ray, and a block of threads per packet. The traversal
kernel advances each packet through the grid slice by slice
until it encounters a non-empty slice, at which point it
examines each intersected cell in the slice. Frustum-
culling per packet can be used in an initial pass for large
granularity culling. For this culling, each packet is repre-
sented by a thread.
 The intersection kernel processes each packet of
rays vs. the cell that the packet is currently visiting.
 The core intersection kernel is a key component
for the performance of the overall system, and we are con-
sidering a number of different implementations. All im-
plementations use one CUDA thread per ray, and a block
of threads for one packet. Memory access to the metaballs
for a cell is amortized across the block since all rays in a
packet traverse the cell together.
 The first routine we developed is probably the
worst. Its is based on the methods described in [NN03] and
It involves segmenting the ray along its length by the me-
taballs affecting each segment. A Bezier approximation for
each segment is then generated, and intersected with via
robust Bezier clipping. A key problem with this approach
is that the searching and sorting involved are highly diver-
gent between rays. Also, the segmentation is dependent on
not only the number but the arrangement of the objects in
the scene, making the runtime of this technique dependent
on the depth complexity of the scene. This technique could
overrun fixed size buffers and fail in the case of complex
arrangements. It has the advantage that is processes inter-
sections in front-to-back order, allowing for early termina-
tion, and that it uses a numerically robust root-finding
technique.
 The second routine developed is probably the
most novel. It involves choosing a limited set of basis func-
tions to represent the density along each ray. For each me-
taball, its density function along the ray is found and pro-
jected onto the basis via a linear transformation in function
space. The limited set of basis functions means that many
coefficients have to be dropped. The coefficients for each
metaball are summed to form a vector of coefficients that
represents approximately the density function along the
ray. Intersection is then performed against this function.
 There are a number of mathematical unknowns
behind this routine. The key choices are the choice of
basis and the choice of density function. The basis must
represent the range of possible density functions well with
a small number of coefficients. The density functions and
the basis must be chosen carefully so that projection can be
performed elegantly and efficiently (general projection
onto a function involves the integral of the product along
the length, to be avoided at all cost). Finally, the final basis
function must be efficient to intersect against (ie not Fou-
rier series).

 In terms of precise implementations, this ap-
proach has several advantages in that it requires constant

memory per ray, to store the vector of coefficients, and
time complexity in the intersection routine that depends on
the complexity of the density function, not directly on the
number of intersected particles. If a basis with finite local
support is used, such as Bsplines, it also allows the ray to
be processed in front-to-back order allowing for early ter-
mination. A downside is that per-ray constant memory cost
is significant, to store the necessary coefficient vector.
Half-precision could probably be used to save space.

 The third approach is the simplest and most
memory efficient. It also requires the most computation.
An iterative root-finding technique such as Newton-
Raphson or the secant method is used, and to evaluate the
function/its derivative when needed, each density function
is evaluated and accumulated. This approach needs only a
small constant working set of memory, just enough to hold
the current and previous iteration of values, and signifi-
cantly less than the method above.
 A disadvantage to this approach is that all meta-
balls for a cell must remain in shared memory for the entire
procedure, unless they are loaded from global memory
each time. The second method can stream the metaballs
through.

 All of these approaches can be optimized for
sparse cells by using bounding spheres. Any rays that miss
the bounding spheres of all metaballs can be immediately
discarded. If any rays hit a single metaball alone, an inter-
section test can be performed against the simple smaller
sphere than a metaball forms alone.

 Once all rays in all kernels have intersected a
metaball, we move to a shading kernel. Information neces-
sary for shading such as surface normals is passed on from
the intersection kernel. Per-particle attributes such as tem-
perature or velocity can also be interpolated using percent-
age contributation towards the density function as a blend-
ing weight.
 For our initial implementation, shading will
probably be performed in a hard-coded CUDA kernel. A
promising option for the final implementation is deferred
shading using Cg.
 The final result of this rendering will be an
OpenGl buffer. This can be copied back to main memory
for storage, displayed directly, or composited with a ren-
dered polygonal scene using depth maps and alpha blend-
ing.

3.6 Foreseen Challenges
 Divergent rays and packets are a dangerous prob-
lem since they could delay the entire rendering.
 At the moment we plan to perform ray-casting,
rather than full ray tracing, with secondary bounces only
for shadowing. A main reason for this is that secondary
rays in general are less coherent that primary rays, and may
form much more divergent packets.
 The behavior of all three given intersection ker-
nels near very dense regions of space, such as those that
could occur in fluid simulations, is worrisome. A very
tight adaptive structure, such as an aggressively fit Kd-tree,

could alleviate this problem. Even that approach doesn't
solve the problem of many many overlapping metaballs.

3.7 Target Platforms

 We will implement this using the CUDA frame-
work on Nvidia GPU's, with OpenGL for display and C++
for client-side wrappers.

3.8 Evaluation Criteria

 This work can be evaluated on a number of di-
mensions compared to other work. These include quality,
performance, and scalability of rendering, as compared to
other implementations on both the GPU and CPU.
 Quality of rendering is mostly relevant as com-
pared to completely different approaches to rendering me-
taballs, including image-space methods, tessellation, or
point-based methods. Ideally we will more precisely cap-
ture curvature and fine detail.
 Performance and scalability can be best meas-
ured as frame rate vs. number of particles at several differ-
ent resolutions, and with different shading complexities on
sample animation sequences. Multiple resolutions/shading
models are important because packets cause runtime cost
to scale sublinearly with the number of rays cast due to
supersampling or increased resolution. This is because
increased ray density leads to more coherent packets and
more efficient traversals.
 These performance curves should be compared
vs the results in the best known CPU implementations as
well as the comparable results in [GPBP09] or [KSN08].

 An benefit of our design is that the traversal and
intersection kernels can be separated, tested, and evaluated
quite independently. The traversal kernel can be plugged
into a “dummy” intersection kernel which merely inter-
sects with bounding spheres to make sure that the accelera-
tion structure is being correctly traversed. The intersection
kernel meanwhile can be tested by casting all rays into and
rendering the results merely from one cell with several
metaballs.

4. RESEARCH TIMELINE

 We would like to submit the research for publi-
cation by April 1st. This means that, if we give a minimum
of two weeks to write a paper and collect results. This
means that the implementation must absolutely be finished
by March 15th. We want to have all functionality in place
and working by the Alpha Review on March 1st. This
gives us two weeks to optimize and bug-fix before the
drop-dead completion date. If the project should be mostly
complete by March 1st and has an estimated time of 130
hours, then in the intervening 6 weeks we'll need to put in
roughly 15-20 hrs/week.

 Please see the attached Gantt chart for a more
exact decomposition of tasks.

Project Milestone Report (Alpha Version)
• All projected functionality included (no new features

beyond here)
• Renders of particles in animation
• Rough C++ wrapper

Project Final Deliverables
• All projected functionality battle-tested
• Performance bottlenecks isolated and fixed
• Performance results under various loads
• Renders with varying shading models of varying parti-

cle data
• Improved wrappers for use as a visualization library

Project Future Tasks
• Add secondary bounces for true reflection and refrac-

tion.
• Explore different acceleration structures and real-time

construction algorithms
• Add full-featured material management
• Use persistent threads with a work queue for dynamic

load balancing
Use stream filtering techniques to rebuild packets out •

• erization pipeline,

of multiple levels of the ray hierarchy
 Better interface with traditional rast
allowing ray-cast metaballs to be embedded in tradition-
ally rendered polygonal scenes

5. Method

6. RESULTS

7. CONCLUSIONS and FUTURE WORK

PPENDIX

ons
 se overlapping regions remain a prob-

m for a

One possibility would be detecting such preproc-

-
ticle/fluid/molecular visualization, for example surface
modeling?

A
A. Questi

Very den
le ll of our intersection kernels. A special way to
handle such regions could make our performance more
robust.

essing. Highly dense regions could then be represented
with a more concise description; for example, very close
metaballs could be merged together and their densities
added. However, this could introduce popping between
frames, as this alternative description flickers on and off.
 Should we target other applications besides par

 What shading features do you place priority on
for high-quality pleasing imagery? (Does not necessarily
need to be “realistic”)

 Do you have any different ideas for intersection
kernels or ideas to make option 2 feasible?

References

 O., Pajot A., Barthe L. Paulin M.
BVH for Efficient Raytracing of Dy-

amic Metaballs. SIGGRAPH 2009

[KSN08] ta T.: GPU-

[NN03] Method for

280
06]

[GPBP09] Gourmel

:
n

[GPSS07] Gunther J., Popov S., Seidel H., Slusallek
P.,: Realtime Ray Tracing on GPU with
BVH-based Packet Traversal

[IDC09] Ivson P., Duarte L. Celes W.: GPU-
Accelerated Uniform Grid Construction
for Ray Tracing Dynamic Scenes.

Kanamori Y., Szego Z., Nishi
Based Fast Ray Casting for a Large Num-
ber of Metaballs. EUROGRAPHICS
2008 Volume 27, Number 2

[MMA07] Mansson E., Munkberg J., Akenine-
Moller T.: Deep Coherent Ray Tracing.
Interactive Ray Tracing 2007
Nishita T., Nakamae E.: A
Displaying Metaballs by Using Bezier
Clipping. Computer Graphics Forum,
Volume 13 Issue 3, Pages 271-

[WIKK* Wald I., Ize T., Kensler A., Knoll A.: Ray
Tracing Animated Scenes Using Coherent
Grid Traversal. ACM TOG Vol 25 issue 3
(2006) pages 485-493

[WSBW01] Wald I., Slusallek P., Benthin C., Wagner
M.: Interactive Rendering with Coherent
Ray Tracing. EUROGRAPHICS 2001
Volume 20, Number 3

[ZHWG08] Zhou K., Gong M., Huang X., Guo B.,:
Real-Time KD-Tree Construction on
Graphics Hardware. SIGGRAPH Asia
2008.

Jan 15 to 22

Gather Results and write-up

Jan 22 to
29

Jan 29 to
Feb 5

Feb 5 to
Feb 12

Feb 12 to
Feb 19

Feb 19 to
Feb 26

Feb 26 to
Mar 5

Mar 5 to
Mar 12

Mar 12 to
Mar 19

Mar 19 to
Mar 26

Mar 26 to
April 2

April 2 to
April 9

April 9 to
April 16

April 16 to
April 23

April 23 to
April 30

Complete study of intersection
routines and acceleration
structures

Implement initial intersection
routine
Implement initial acceleration
structure construction and
traversal

Integrate, debug, and develop full
pipeline including ray generation
and shading

Define external wrappers and
support application, including
driving particle data

Complete Implementation and
Optimize

Introduce Secondary Bounces
and full-featured material
management
Improve wrappers use as
visualization library

Figure 1: Gantt Chart. April 1st is our deadline for publication, with time after that being spent on refining our application.

	
	ABSTRACT
	1. INTRODUCTION
	1.1 Design Goals
	1.2 Projects Features and Functionality
	2. RELATED WORK
	2.1 Interactive Ray Tracing

	3. PROJECT PROPOSAL
	3.1 Acceleration Structure
	3.7 Target Platforms
	3.8 Evaluation Criteria

	4. RESEARCH TIMELINE
	5. Method
	6. RESULTS
	7. CONCLUSIONS and FUTURE WORK
	References

