
CIS680: Vision & Learning

Assignment 3: MobileNet, ResNet, and

Faster R-CNN

Due: Nov. 17, 2017 at 11:59 pm

Instructions

• This is an individual assignment. “Individual” means each student must hand in
their own answers, and each student must write their own code in the homework.
It is admissible for students to collaborate in solving problems. To help you actually
learn the material, what you write down must be your own work, not copied from
any other individual. You must also list the names of students (maximum two) you
collaborated with.

• All the code should be written in Python. You are welcome to use Tensorflow or
PyTorch to complete this homework.

• The CIFAR-10 dataset can be downloaded from [1]. In this homework, use train
batch #1 for training and test batch for evaluation, each of which contains 1,000
images for 10 classes.

• The Transformed CIFAR-10 dataset for Faster R-CNN experiments can be down-
loaded from the course wiki website.

• You must submit your solutions online on Canvas. Compress your files into a ZIP
file named “3 <penn key>.zip”, which should contain 1 PDF report and 3 folders
containing the Python code for each part. Note that you should include all the
figures in your report.
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Overview

This homework aims at implementing and analyzing several well developed networks for
feature extraction, localization and recognition. You will experiment and analyze three
base networks, namely, ConvNet, MobileNet [4], and ResNet [3]. After developing the base
networks, you can make use of their features to localize the object in an image. Finally,
you will implement a simplified version of Faster R-CNN [2].

This homework consists of three parts.

1. Experiment and analyze three base networks, namely, ConvNet, MobileNet [4], and
ResNet [3]. The analysis includes performance and computation efficiency.

2. Implement a region proposal network consisting of a proposal classifieer and regressor.

3. Implement Faster R-CNN [2], which includes a region proposal network and a object
classifier.

Note that the full training of a network takes much time using only CPUs. You should
observe the trend of training over the first couple hundreds of iterations and decide whether
to finish training or not.

1 Base Networks: ConvNet, MobileNet, and ResNet (30%)

Before deep learning emerges, computer vision researchers design features to describe
and/or discriminate images, e.g., HOG, SIFT, Gist, etc. Nowadays, researchers turn to
design deep architectures to learn features that are useful for various tasks including ob-
ject recognition, object detection, and semantic segmentation. In this part, you will build
three base networks and compare their performance and efficiency using the CIFAR-10
dataset.

1. (5%) Train a network with architecture shown in Table 1.

All convolution should preserve the input resolution with stride 1. Use Adam opti-
mizer and exponential learning rate decay from 10−3 to 10−4 in 2, 000 iterations. Use
weight decay 0.05.

Report the final test accuracy and total training time. Count the total number of
multiplications in convolution layers. (Do not count batch normalization.)
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Layers Hyper-parameters

Convolution 1 Kernel size = (5, 5, 32). Followed by BatchNorm and ReLU.

Pooling 1 Max operation. Kernel size = (2, 2). Stride = 2. Padding = 0.

Convolution 2 Kernel size = (5, 5, 64). Followed by BatchNorm and ReLU.

Pooling 2 Max operation. Kernel size = (2, 2). Stride = 2. Padding = 0.

Convolution 3 Kernel size = (5, 5, 128). Followed by BatchNorm and ReLU.

Pooling 3 Max operation. Kernel size = (2, 2). Stride = 2. Padding = 0.

Convolution 4 Kernel size = (5, 5, 256). Followed by BatchNorm and ReLU.

Pooling 4 Max operation. Kernel size = (2, 2). Stride = 2. Padding = 0.

Convolution 5 Kernel size = (3, 3, 512). Followed by BatchNorm and ReLU.

Pooling 5 Max operation. Kernel size = (2, 2). Stride = 2. Padding = 0.

Softmax (With fully connected layer) output channels = 10.

Table 1: Network architecture for part 1.

2. (10%) Replace the first 4 convolution layers with the separable convolution layers as
shown in Figure 1.

Tensorflow Guide: Use function tf.nn.depthwise conv2d().

Report the final test accuracy and total training time. Count the total number of
multiplications in convolution layers. (Do not count batch normalization.)

3. (10%) Replace the first 4 convolution layers with the residual blocks as shown in
Figure 2.

Report the final test accuracy and total training time. Count the total number of
multiplications in convolution layers. (Do not count batch normalization.)

4. (5%) Compare and explain the results in the previous questions.

2 Region Proposal Network (40%)

In this part, you will build a region proposal network step by step with the base networks
you developed in the previous part. Region proposal network is a part of Faster R-CNN
(Figure 3) for localizing objects in an image. You will implement a simplified version of
region proposal network which consists of only one set of anchors (as opposed to nine sets
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Figure 1: MobileNet and the separable convolution layer. A convolution layer (in dashed
green box) can be converted to a separable convolution layer in the rightmost column.

in the paper). It’s highly recommended to read the paper [2] beforehand. Starting from
this part, use the Transformed CIFAR-10 dataset for experiments.

The Transformed CIFAR-10 dataset consists of images from the original CIFAR-10 dataset
with random scaling from 0.5 to 2 and random shifting. The images with resolution (48, 48)
thus contain one object each with size from (24, 24) to (40, 40) in random. Note that the
aspect ratio is always 1. Some sample images are shown in Figure 4.

Each image in the Transformed CIFAR-10 dataset comes with its label, location, and size.
The file ‘train.txt’ and ‘test.txt’ consist of image names, class labels, row and column
coordinates of the object centers, and widths of the objects in order.

To help you get started, each image also comes with a mask indicating the location of the
object as shown in Figure 4. (The mask is blurred due to display.) The gray areas indicate
the center of the object where the anchor box has over 0.7 Intersection-Over-Union (IOU)
score; the black areas indicate less than 0.1 IOU score; The white areas should be ignored
in training. The raw masks use 0’s for black areas, 1’s for gray areas, and 2’s for white
areas. The resolution of masks is (6, 6) for the base network will down-sample the images
by a factor of 8.
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Figure 2: ResNet and the residual block. A convolution layer (in dashed green box) can
be converted to a residual block in the rightmost column.

Figure 3: Faster R-CNN and its region proposal network.

1. (20%) Build a base network as shown in Table 2.

Use the features (conv4) from the base network to build a proposal classifier (as the
cls branch in Figure 3). Specifically, add a standard convolution layer (referred as the
intermediate layer) with kernel size (3, 3, 256) (followed by BatchNorm and ReLU)
and a convolution layer with kernel size (1, 1, 1) with no rectification layer. Use
the ground truth masks and point-wise (i.e., over (6,6) feature map) sigmoid cross
entropy loss to train the proposal classifier. The training procedure is the same as
part 1.

Plot the training loss over training iterations. Report the (point-wise) test accuracy
of the proposal classifier.

Tensorflow guide:
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Figure 4: Images and masks in the Transformed CIFAR-10 dataset.

Some functions might be useful: tf.where(), tf.gather(), and

tf.nn.sigmoid.cross entropy with logits().

Layers Hyper-parameters

Convolution 1 Kernel size = (5, 5, 32). Followed by BatchNorm and ReLU.

Pooling 1 Max operation. Kernel size = (2, 2). Stride = 2. Padding = 0.

Convolution 2 Kernel size = (5, 5, 64). Followed by BatchNorm and ReLU.

Pooling 2 Max operation. Kernel size = (2, 2). Stride = 2. Padding = 0.

Convolution 3 Kernel size = (5, 5, 128). Followed by BatchNorm and ReLU.

Pooling 3 Max operation. Kernel size = (2, 2). Stride = 2. Padding = 0.

Convolution 4 Kernel size = (3, 3, 256). Followed by BatchNorm and ReLU.

Table 2: Base network architecture for part 2.

2. (20%) In this question, you will build a proposal regressor (as the reg branch in
Figure 3). On top of the intermediate layer, add another convolution layer with
kernel size (1, 1, 3) (without BatchNorm and rectification). Note that you should
initialize the biases to be (24, 24, 32) for each channel. The first two channels are for
the row/column coordinates of the object center and the third channel for the width
of the object.

Parameterize the coordinates as follows:

tx = (x− xa)/wa, ty = (y − ya)/wa, tw = log(w/wa)

t∗x = (x∗ − xa)/wa, t
∗
y = (y∗ − ya)/wa, t

∗
w = log(w∗/wa)
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where x, y, and w denote the box’s center coordinates and its width. Variables x, xa,
and x∗ are for the predicted box, anchor box, and groundtruth box respectively
(likewise for y and w).

The regressor is trained with the Smooth L1 loss defined as:

Lreg(ti, t
∗
i ) =

1

Nreg

∑
i

smoothL1(ti − t∗i )

where

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise.

Note that the regressor loss is computed only on where the proposal masks equal to
1.

Train the whole network with two equally weighted losses from the proposal classifier
and regressor. The training procedure is the same as the previous question.

Plot the training regression loss over training iterations. Report the final testing
regression loss.

Tensorflow guide:

When the shape mismatch, consider functions such as tf.expand dims(), tf.reshape(),
tf.tile().

You will also need tf.where() and tf.gather() to ensure that you only impose regression
loss on where the masks equaling 1.

tf.losses.huber loss() can be used to model Smooth L1 loss.

3 Faster R-CNN (30%)

With the base network and region proposal network ready, you are now only one step from
completing Faster R-CNN. After finishing the whole pipeline of Faster R-CNN, you can
also change the base network to see the effect of different learned features.

1. (10%) One important layer that transforms the features of the proposal into the final
object classifier is the ROI pooling layer. The ROI pooling layer warps the features
of an ROI region into a fixed-sized feature map.
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To save some effort, we provide a spatial transformer layer that can be used as ROI
pooling layer. Check the usage in the Python file (spatial transformer.py).

10% extra credits will be given if you program the ROI pooling layer without using
spatial transformer layer or any other bilinear sampling layer.

The parameter θ to be fed into spatial transformer layer is as follows:

θ[:, 0] = w/48, θ[:, 1] = 0, θ[:, 2] = (x− 24)/24,

θ[: 3] = 0, θ[:, 4] = w/48, θ[:, 5] = (y − 24)/24

where x, y, w are the predicted box’s column/row coordinates and width. Note that
the predicted box is the maximally activated proposal.

Feed the original images into the spatial transformer layer with output resolution
(32, 32).

Display few outputs of the spatial transformer layer as shown in Figure 5.

Tensorflow guide: tf.argmax() and tf.gather nd() might be useful.

2. (10%) Use the same θ parameter for the spatial transformer layer; however, feed in
the feature map (conv4) from the base network and set the output size as (4, 4).

Add a fully convolution layer with 256 output channels (followed by BatchNorm and
ReLU) and a 10-way Softmax layer (with fully connected layer) for classification.

Train the network (consisting of proposal classifier, regressor, and object classifier)
end-to-end with the same training procedure.

Plot the 3 training losses over training iterations. Report the final classification test
accuracy.

3. (10%) Replace the first three convolution layers in the base network (Table 2) with
separable convolution layers or residual block respectively. Repeat the experiments
in the previous question.

Plot the 3 training losses over training iterations for two base networks. Report the
final classification test accuracy. Compare the results of Faster R-CNN with all three
base networks.
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Figure 5: Inputs (top) and Outputs (bottom) of the spatial transformer layer with predicted
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