
UPennalizers

Robocup 2013 Standard Platform League

Team Description Paper

Christopher Akatsuka, Alan Aquino, Sarah Dean,
Yizheng He, Tatenda Mushonga, Yida Zhang, and

Dr. Daniel Lee

General Robotics Automation, Sensing and Perception (GRASP)
Laboratory

University of Pennsylvania

Abstract

This paper presents the organization and architecture of a team of
soccer-playing Nao robots developed by University of Pennsylvania’s Robocup
SPL team. It also documents the efforts gone into improving the code base
for the 2013 competitive season. All sensory and motor functions are pro-
totyped and run in Lua on the embedded on board processors. High-level
behaviors and team coordination modules are implemented by Lua using
state machines. The locomotion engine allows for omni-directional mo-
tions and uses sensory feedback to compensate for external disturbances.
The cognition module helps robot to detect landmarks and localize in
a symmetric environment. Through the year, improvements were made
across all of the various modules.

1

1 Introduction

In 1999, two years after the first international Robocup meet, the University
of Pennsylvania formed the UPennalizers autonomous robot soccer group and
began stepping up to the challenges put forth by the competition. While the
league was still utilizing four-legged Sony Aibos, the UPennalizers made the
quarterfinal rounds every year through 2006 before taking a brief two-year hia-
tus in 2007. The team reformed and returned in 2009 to begin competing in
the Standard Platform League with Aldebaran Naos, taking on bipedal motion
alongside improved vision techniques and advanced team behaviors.

Continuing its streak of making the international quarterfinals through 2012,
the UPennalizers were challenged in 2013 with training a team of entirely new
undergraduates without its seasoned veterans from previous years. The decision
was also made to merge code bases with the University’s graduate Robocup
group, Team DARwIn, in order to share robot behaviors, knowledge between
team members, and operating skills between both leagues. The new team went
on to take first place at the 2013 US Open, and took the Consolation Cup at
Robocup 2013 Eindhoven, finishing Rank 11 of 22.

2 Software Architecture

A high-level description of the software architecture for the Naos is shown in
Figure 1. The current architecture is an expansion upon the previous years
work. It uses Lua as a common development platform to interface between all
modules.

Low-level interactions with hardware are implemented using compiled C li-
braries in conjunction with the Nao’s on-board hardware controller (NaoQi) or
custom controllers. These in turn, are called via Lua scripts, and allow for con-
trol over motor positions, motor stiffnesses, and LED’s. Sensory feedback is also
handled similarly, allowing users to get data from a variety of sources such as
the Nao’s two on-board cameras, foot weight sensors, the inertial measurement
unit (IMU), and the ultrasound microphones.

2

Fig. 1. Block Diagram of the Software Architecture.

The system maintains a constant update speed of 100Hz, and is decoupled
into two separate pipelines. The main process handles motion control and be-
havior control, while an auxiliary process is dedicated solely to cognition pro-
cessing. This decision, made last season, allows for more efficient handling of
the Nao’s on-board single-core Intel Atom Z530 clocked at 1.6 GHz. The cog-
nition engine runs off of the remaining processing power not used by the main
modules, and as a result, the Naos were noted to be much more stable and
robust than in previous years.

Inter-process communication is accomplished via shared memory. Important
information such as ball distance, position on the field, and game state are
examples of shared memory variables. Any module can write and read to shared
memory. In addition, any operator connected to a Nao via secure shell can
monitor the data stored in the shared memory module without any change or
impact on the running system, allowing for real-time on-the-fly debugging and
analysis through either Lua or MATLAB.

A variety of software is used to run our Naos. We utilize Lua 5.1.15 and
LuaJIT 2.0.1 for high level interactions, MATLAB R2013a for debugging vision
and localization information, C/C++ to run low-level processes, and Webots
7.1.2 for simulation purposes.

3

2.1 Software Modules

The main modules accessed by our Lua routines are as follows, layered hierar-
chically:

Camera Direct interface to the cameras located in the forehead (upper) and
mouth (lower); controls switching frequency and bundling of images in
YUYV format.

Vision Interprets incoming images; based on the user-created color table and
camera parameters, the module passes on information relating to the pres-
ence and relatively location of key objects such as the ball, defending goal
posts, attacking goal posts, field lines, field corners, and other robots.

World Models the robot’s state on the field, including pose and filtered ball
position;

Body Handles physical sensory information and functions; reads joint encoders,
IMU data, foot weight sensors, battery voltage, and chest button presses,
but can also set motor positions, stiffnesses, and LED’s.

Motion Dictates general movements on the Nao; i.e. sitting, standing, diving

Walk Controls omni-directional locomotion; takes in hand-tuned parameters
and applies them to a zero-moment point (ZMP) based walk engine.

Kick Maintains intra-robot stability during kick movements; different kick set-
tings can be loaded to allow for powerful standing kicks, quick walk-kicks,
and decisive side-kicks.

Keyframes Lists scripted positions for certain movements; getting up from
front and back falls is done by feeding the Body module a series of motor
positions and timings.

Game State Machine Receives and relays information from the Game Con-
troller; information from the GSM such as game state determines behavior
among all robots on the field during certain times of the game.

Head State Machine Controls head movements; different conditions deter-
mine when to switch into ball searching, ball tracking, and simply looking
around.

Body State Machine Dispatches movement instructions; conditions from all
previous modules will cause the Nao to switch between chasing after far
away balls, performing curved approaches to line up for shots, dribbling,
and performing kicks when the ball is close enough.

4

3 Vision

Our algorithms used for processing visual information are similar to those used
by other Robocup teams in the past. Since fast vision is crucial to the robots
behaviors, these algorithms are implemented using a small number of compiled
Mex routines.

During calibration, a Gaussian mixture model is used to partition the YCbCr
color cube into the following colors:

– Orange (Ball)

– Yellow (Goals)

– Green (Field)

– White (Lines)

Using a number of trained images, resulting in a color look-up table. While
the robot is running, the main processing pipeline segments the highest-resolution
color images from the camera by classifying individual pixels based upon their
YCbCr values. Connected regions are recognized as either connected compo-
nents or edge regions, and objects are recognized from the statistics - such as
the bounding box of the region, the centroid location, and the chord lengths in
the region - of the colored regions. In this manner, the location of the ball and
goal posts are detected.

Field line recognition decreases the need for robots to actively search for
landmarks, enabling them to chase the ball more effectively. The first step in
line identification is to find white pixels that neighbor pixels of field green color.
Once these pixels are located, a Hough transform is used to search for relevant
line directions.

In the Hough transform, each possible line pixel (x, y) in the image is trans-
formed into a discrete set of points (θi, ri) which satisfy:

x cos θi + y sin θ = ri (1)

The pairs (θi, ri) are accumulated in a matrix structure where lines appear as
large values as shown in Figure 2. To speed the search for relevant lines, our
implementation only considers possible line directions that are either parallel or
perpendicular to the maximal value of the accumulator array. Once these lines
are located, they are identified as either interior or exterior field lines based
upon their position, then used to aid in localization.

5

Fig. 2. Hough transformation for field line detection in images.

3.1 Calibrating and Debugging

3.1.1 Monitoring

To debug the vision code, we developed a tool to receive image packets from an
active robot and display them. To this end, we broadcast YUYV images,as well
as two labeled images. The YUYV images represent what a robot is literally
seeing at any given time, and the labeled images depict what the robot thinks
it is seeing at that same time. We programmed a GUI in MATLAB which
receives these packets, reconstruct them, and then displays them for the user
to see. Through the use of this debugging tool, it is possible for us to test and
improve our color look up tables with ease.

Fig. 3. Monitor for Debugging.

3.1.2 Setting Camera Parameters

Since vision depends highly on the quality of pictures from the camera, setting
camera parameters (i.e. Exposure, Contrast, and Saturation) properly is crucial
to the developing and debugging of vision code. To get better images and
change parameters easily, the camera driver was modified and a Lua script was
developed. Figures 4(a) and 4(b) display a set of camera parameter values.

6

These parameters should make the top and bottom camera visually appear as
similar as possible because both cameras feeds are converted using the same
colortable.

(a) Top camera (b) Bottom camera

Fig. 4. Example camera parameters.

3.1.3 Colortables

After camera parameters are set, pictures are taken from both cameras. Color
segmentation training is then conducted through a Colortable Selection Tool,
where colors of interest are associated with specific YCbCr values by a single
click. Depending on the threshold value used, connected regions to the pixel
clicked are also highlighted if their YCbCr values are close. In order to eliminate
noise, we first process image packets with color definitions using a Gaussian
mixture model that analyzes the probability density function of defined pixel
values in conjunction with Bayes’ Theorem, which expands boundaries of the
color classes. As seen in the transition from Figure 5(a) to Figure 5(b), defined
colors are displayed as a single shade in Label Mode A. Undefined colors show
as black colors.

(a) An unprocessed image (b) An image in Label Mode A

Fig. 5

7

Next, we merge the pixels in 4x4 blocks through XOR operation assuming
that target objects that are large enough that they won’t be eliminated. As
seen in the transition from Label Mode A to Label Mode B in Figure 6, which
is the product of these XOR’s, most of the eliminated pixels were either black,
undefined pixels, or noise pixels.

Fig. 6. An image in Label Mode B

3.1.4 Logging and Camera Simulator

Logging information allows the user to log vision data without affecting the
currently running system in any way. These vision data are usually taken when
the robot is running in a real competition environment and are thus of debugging
value. We used MATLAB as our main logging program. The data we record
includes:

– Time Stamp

– Joint Angles

– IMU Data

– YUYV Image

To better test our vision code, we developed the camera simulator in MAT-
LAB. Instead of getting images from the robot, the simulator takes images from
previous logs (generated by the logging tool) and pushes these data into the
shared memory. Image processing codes can then run based on the logged im-
ages. This tool enables the user to debug the vision code without the use of a
robot.

3.2 Updates to Vision Code

3.2.1 Changes in Line and Corner Detection

More checking routines have been added to line and corner detection to eliminate
false-positives. Normally after first conducting a basic white and green pixel

8

check, white blobs are put through various tests to determine whether they
are lines or corners. As seen in Figure 7, these tests are crucial as there is
often a lot of white noise in the background that would result in false-positives.
Line and corner tests include ground checks, cross checks, line overlap checks,
length-width ratio thresholds, horizon checks, and an in-field check.

One important addition to our line tests was a distance check. Line detection
from far away is useless anyways due to size fluctuation caused by noise and/or
not enough white pixels surviving the transition from Label Mode A to Label
Mode B. Lines that appear too close or too far away pose the risk of throwing
off the robot’s localization.

Fig. 7. Only a true white line detected in Label Mode B

In regards to corner detection, a new addition to our tests was the elimina-
tion of the center circle by means of location on field. False corners are often
detected on the surface of the center circle, causing localization to be inaccu-
rate. Ultimately, line and corner detection are low-weighted contributions to
localization that are designed to pick up most lines and corners rather than all
lines and corners in order to avoid detecting even a few false lines and corners.

3.2.2 Changes in Spot and Ball Detection

Spot and ball detection code were updated to include successful tests from line
and corner detection. Such changes include the addition of a distance check
and a check for field opposite the part of a ball or spot partially cut off by the
camera at the periphery of its vision. Both changes made the detection of false
balls much more unlikely and did not seem to hinder the detection of true balls
while in competition.

9

3.2.3 Changes in Goal Detection

The variance in goal distance calculation has always been a crucial source of
error in vision and localization. As a quick fix to the problem with the Nao
robot miscalculating its distance away from goal posts by a uniform number
from any point on a field, we implemented a goal distance factor. This factor
multiplies the distance from the goal that the localization code uses. Before
every match, we simply needed to update the factor after placing the robot at
different distances from the goal posts.

4 Localization

The problem of knowing the location of robots on the field is handled by a
probabilistic model incorporating information from visual landmarks such as
goals and lines, as well as odometry information from the effectors. Recently,
probabilistic models for pose estimation such as extended Kalman filters, grid-
based Markov models, and Monte Carlo particle filters have been successfully
implemented. Unfortunately, complex probabilistic models can be difficult to
implement in real-time due to a lack of processing power on board the robots.
We address this issue with a pose estimation algorithm that incorporates a hy-
brid Rao-Blackwellized representation that reduces computational time, while
still providing a high level of accuracy. Our algorithm models the pose uncer-
tainty as a distribution over a discrete set of heading angles and continuous
translational coordinates. The distribution over poses (x, y, θ), where (x, y) are
the two-dimensional translational coordinates of the robot on the field, and θ is
the heading angle, is first generically decomposed into the product:

P (x, y, θ) = P (θ)P (x, y|θ) =
∑
i

P (θi)P (x, y, |θi) (2)

We model the distribution P (θ) as a discrete set of weighted samples {θi},
and the conditional likelihood P (x, y|θ) as simple two-dimensional Gaussian.
This approach has the advantage of combining discrete Markov updates for the
heading angle with Kalman filter updates for translational degrees of freedom.

10

Fig. 8. Rao-Blackwellized probabilistic representation used for localization.

When this algorithm is implemented on the robots, they quickly incorpo-
rate visual landmarks and motion information to consistently estimate both
the heading angle and translation coordinates on the field as shown in Figure
8. Even after the robots are lifted (’kidnapped’) by the referees, they quickly
re-localize their positions when they see new visual cues.

4.1 Particle Initialization

Our algorithm utilizes 200 particles to estimate the position of the robot. Prop-
erly initializing the positions of the particles helps improve the accuracy of the
localization algorithm. Before the game starts, in the Ready state, the parti-
cles are initialized on the sides of the defending half of the field, as shown in
Figure 9. In the Set state, if the robot is not manually replaced, its particles
are initialized near the possible initial positions defined in our game strategy.
Besides, during the game, when a robot falls down, its localization particles’
heading angles are reinitialized.

11

Fig. 9. Initialization of particles before game starts.

4.2 Odometry, Landmark Observation and Re-sampling

A Kalman filter is implemented to track the continuous change on the position
and weight of each particle. The filtering is a product of two steps: the motion
model update and the measurement update. The motion model update - also
referred to as the odometry update - utilizes the robot kinematics to update the
particle filter as the robot walks around the field. Given the joint angles of the
robot, forward kinematics is used to compute the location of the robot’s feet as
it walks. The change in translation and rotation of the body of the robot are
computed based on the position of the feet, as shown in Figure 10, and used to
update the particle filter.

Fig. 10. Visualization of the odometry calculation after one step.

The measurement model refines this estimate using sensory inputs, such as
vision-based landmark detection. As previously mentioned in this paper, our
vision model is able to detect and calculate the three-dimensional position of
different landmarks, including: goal posts, field lines, and corners. The measure-
ment model incorporates these data to adjust the particle positions and their

12

weights in the filter. Due to the difference in reliability of different landmark
detections, we incorporate different types of observed landmark positions differ-
ently. For instance, while goal post detection is used to correct both the position
and heading angles, corner and line detections are mainly used to correct the
heading angles since the variance in their position calculation is relatively large.

Our algorithm re-samples all of the particles every 0.1 seconds. We use the
stratification method to redraw all of the particles so that the ones with higher
weight will stay. Figure 11 illustrate the result of our algorithm. While the
robot is moving on field, the particles are drawn in our debugging tool.

Fig. 11. The robot takes in and weighs landmarks to establish an accurate
estimation of its position on the field.

4.3 Error Correction

One great challenge in the Standard Platform League is the symmetric field.
Under ideal circumstances where the robot’s starting position is known, the
basic particle filter approach alone is enough to keep track of the correct robot
pose. However, noise in the motion model, inevitable false positive detections of
landmarks, and falling down, will all eventually cause the robot to converge on
a pose that is symmetrically opposite the true location. This year, the problem
is further complicated by the increase in the size of competition fields, which
results in higher variance in vision detection. To address this problem, we use
the team correcting mechanism based on goalie ball information.

For most of the cases, the goalie stays in the penalty box, and it stays close
to the defending goal posts. Therefore, among the five players on the field, the
goalie is most confident about its location, as well as the detected ball position.
During the game, if a player robot and the goalie see the ball simultaneously
but they believe the ball is on different sides of the field, it is very likely that
the player robot’s localization is flipped. Under such circumstances, its particles
will be flipped according to the center of the field.

Moreover, since the robots are very likely to generate localization error when
they fall over near the center of the field, we label robots that fall near the center

13

as ”confused players”. Such players will not make direct shots when they see
the ball. Instead, they will dribble or walk-kick the ball until the goalie sees the
ball and confirms their positions.

5 Motion

Motion is controlled by a dynamic walk module combined with predetermined
scripted motions. One main development has been a bipedal walk engine that
allows for fast, omni-directional motions.

The walk engine generates trajectories for the robot’s center of mass (COM)
based upon desired translational and rotational velocity settings. The module
then computes optimal foot placement given this desired body motion. Inverse
kinematics (IK) are used to generate joint trajectories so that the zero moment
point (ZMP) is over the support foot during the step. This process is repeated
to generate alternate support and swing phases for both legs.

IMU feedback is used to modulate the commanded joint angles and phase
of the gait cycle to provide for further stability during locomotion. In this way,
minor disturbances such as carpet imperfections and bumping into obstacles do
not cause the robot to fall over.

For our 2013 season, the underlying walk engine described above was not
altered; the only changes were made to parameter files dictating a few control-
lable variables. Depending on the surface of play, a number of these parameters
need to be tuned. These include the body and step height, percentages of single-
and double-support, velocity and acceleration limits, and gyroscopic feedback.
These parameters are tuned by hand, and a skilled operator is able to watch a
robot stumble on a new surface and know exactly what needs to be tweaked.
We also opted to use a slow and stable walk that remained mostly unchanged
throughout the week, opting to dedicate our efforts to behavioral and localiza-
tion improvements.

Fig. 12. Example parameters for one of our walk files.

14

5.1 Kicks

Our kicks this year are a combination of scripted keyframes and ZMP-based
kicks. Of our three kicks – standing, walk, and side – only the walk-kick utilizes
the new ZMP engine. The old-fashioned style kicks are created by specifying
motor positions and timings, and must be carefully tuned by hand in order
to ensure balance, stability, and power. The new kicks are inherited from our
merge with Team DARwIn. Similar to how the walk engine calculates joint
positions in response to motion requests of the COM and ZMP, our newer kick
calculates the way that the robot needs to balance in order to perform faster
and more powerful kicks.

While we utilized a mix of a keyframed standing and keyframed walk-kick
during the US Open to great success, after transitioning to the ZMP walk-kick,
we used this newer kick solely during our matches in Eindhoven. This allowed
us to have greater control over the ball, and react quicker than opponent robots
which would approach a ball and take excessive time during their keyframe
motions to do a kick.

5.2 Keyframing

A keyframe file consists of a series of frames, snapshots of the 22 motor positions
along with a timing by which those positions must be reached from the previous
frame. Though the motors natively read and write radians to their encoder, we
use degrees and convert them later for better readability.

angles = vector.new({

0.1, 25.5,

109.8, 11.0, -88.9, -21.4,

-13.7, -0.3, 17.1, -5.6, 5.2, 7.6,

0.0, -1.8, 14.6, -1.1, 4.9, -2.7,

109.9, -10.2, 88.7, 19.9,

})*math.pi/180,

duration = 0.400;

The motors in order are:

1. HeadYaw

2. HeadPitch

3. LShoulderPitch

4. LShoulderRoll

5. LElbowYaw

6. LElbowRoll

7. LHipYawPitch

8. LHipRoll

9. LHipPitch

10. LKneePitch

11. LAnklePitch

12. LAnkleRoll

13. RHipYawPitch

14. RHipRoll

15. RHipPitch

16. RKneePitch

17. RAnklePitch

18. RAnkleRoll

19. RShoulderPitch

20. RShoulderRoll

21. RElbowYaw

22. RElbowRoll

15

We utilize keyframed motions for two types of kicks, and also for our get-up
motions. Like our walk, keyframes are hand-tuned based upon experimentation.
To prolong the life of our robots, we do most of the heavy keyframe testing in
Webots and then port it to the robots and perform final checks to verify full
functionality.

6 Behavior

Finite state machines (FSMs) dictate the behaviors on our Naos and allow them
to adapt to constantly changing conditions on the field. Updated at a speed
of 100Hz, FSM’s are analogous to flow charts. Our implementation of an FSM
consists of a file that defines the transitions (BodyFSM.lua and HeadFSM.lua for
the body and head, respectively) and a series of larger files that define specific
states (i.e. bodyPosition.lua or headSweep.lua). A specific state consists of
three main functions entry, update, and exit.

As their names suggest, the entry and exit functions specify actions that
need to be taken when a robot first enters a state or when it finally completes
a state. An example of a typical entry action is print(NAME..entry), which
sends a simple print statement to the main feed and tells an operator what state
a robot is currently in. Exit statements tend to be empty and are simply there
to facilitate state machine functionality, but occasionally contain an action such
as telling the Motion module to command a stance when leaving bodyIdle.

After entering and before exiting, the Nao will constantly cycle through the
body of a state (the update function), querying the environment until certain
conditions are met. During bodySearch, for example, the robot will rotate in
place until either a) the ball is spotted and causes a transition to bodyPosition
to determine how far away the ball is; b) it times out after a certain amount of
time has been spent updating, and will transition to bodyGoToCenter to move
the robot towards the center of the field in hopes of finding a ball.

Non-goalie behaviors are described here because they apply to a majority of
the robots on the field (4 out of 5). The goalie will utilize the same transition
file as a regular player, but instead uses a series of states unique only to the
goalie.

16

6.1 The Body Finite State Machine (BodyFSM)

Fig. 13. Body State Machine for a non-goalie player.

The specific body states used in our 2013 code are as follows:

bodyAnticipate Goalie specific:
Prepare for the ball to come
within range.

bodyApproach Align for kick.

bodyChase Ball sighted; run for ball
and slow as distance decreases.

bodyDribble Dribble the ball.

bodyGotoCenter Return to the cen-
ter of the field, defined as (0, 0).

bodyIdle Initial state when the main
code is started up. Nao will be
sitting awaiting button press or
game state change to ’Ready’.

bodyKick Perform a standing kick.

bodyObstacle Obstacle detected.

bodyObstacleAvoid Sidestep or
stop movement until the obstacle
clears.

bodyOrbit Make fine adjustments to
trajectory before kicking.

bodyPosition Main body state;
most states will transition back
here.

bodyPositionGoalie Main body
state for the goalie.

bodyReady Clears temporary vari-
ables and prepares the robot to
start a new half.

bodyReadyMove After a goal has
been scored or when game state

17

is ’Ready’, returns the robot to
its initial position on the field.

bodySearch Revolve and search for
the ball.

bodyStart Initial state when game
goes to ’Playing’; handles kickoff.

bodyStop Stops the robot com-

pletely.

bodyWalkKick Perform a kick while
in motion.

bodyUnpenalized Commands the
Nao to stand back up and walk
into the field after being unpe-
nalized.

6.2 The Head Finite State Machine (HeadFSM)

Because the head has far fewer degrees of freedom, it is much less complex than
the FSM used for the body. Its overall functionality, however, remains the same
as the body state machine.

Fig. 14. Head State Machine for a non-goalie player.
Left : used while playing / Right : Used during READY state

The specific head states used in our 2013 code are as follows:

headIdle Initial state after main code
is run; wait for game change.

headKick During bodyApproach,
keep the head tilted down to-
wards the ball.

headKickFollow Follow the ball af-
ter a kick.

headLookGoal Look up during ap-
proach to find the attacking goal
posts.

18

headReady Localize during
BodyReadyMove by finding lines.

headReadyLookGoal When in the
initial position, look towards the
attacking goal posts to localize.

headScan Look around for the ball.

headStart Initial state after the
game state changes to ’Playing’.

headSweep Perform a general
search, with a priority on finding
goal posts.

headTrack Track the ball, moving or
stationary.

headTrackGoalie Goalie-specific:
Track the approaching ball.

6.3 Changing Behaviors

Adding new states is fairly simple to do. First, a declaration of a new state,
followed by its relevant transitions, must be set in the head file (BodyFSM.lua
or HeadFSM.lua).

require(’NEW_STATE ’)

..

sm:add_state(NEW_STATE)

..

sm:set_transition(NEW_STATE , ’return -condition ’,

NEXT_STATE)

sm:set_transition(PREVIOUS_STATE , ’return -

condition ’, NEW_STATE)

Then the new state file must be placed in the same folder as the head file, and
must contain an entry, update, and exit function.

function entry ()

#actions

..

function update ()

#actions

..

function exit()

#actions

In this way, new behaviors can quickly be added or existing ones modified as
required.

6.4 Updates in State Machines for 2013

For the Body State Machine, one important improvement is the approach method.
Instead of the traditional direct approach method, this year we implemented the
curvature approach method, as illustrated in 15(a), which enables the robots to
quickly reach and kick the ball. We built it through careful calculation of the
robot’s approaching path: basically speaking, the desired position of the robot

19

in each cycle of the state machine is changing with the attacking angle. As the
robot gradually rotates to face the goal, its destination moves closer to the ball,
which results in a curved path.

Obstacle detection code was improved in preparation for this years competi-
tion. Data read from the ultrasound sensors allows informed decisions as to the
presence of an obstacle in the robots path to be made. Significant filtering of
the input data, as well as relative as opposed to absolute measurements, allows
us to generate a relatively reliable signal. From this information, it is possible
to perform avoidance maneuvers if necessary.

(a) During our regular approach,
the Nao approaches the ball in
a straight line until getting to a
certain orbit distance, and then
sidesteps and rotates into position.

(b) The new curve approach that
we implemented allows the Nao to
perform its angle rotation during
the approach, resulting in an over-
all faster motion to line up for
kicks.

Fig. 15. Difference between our original and our improved approach.

6.5 Team Play

To make efficient use of the field, we have divided our team of five robots into 4
separate and distinct roles. These various roles have differing starting positions,
and inhabit different parts of the field after kickoff. Our roles are as follows:

20

Goalie 1 Stays in and around the defensive goal to clear
the ball when it comes close.

Attacker 2 Goes directly towards the ball and kicks.
Supporter 3 Follows the attacking robot up-field, but stays

at a respectable distance away—usually about
midfield.

Defender 4 The defending robot positions itself between
the ball and defensive goal area.

Defender Two 5 Performs double duty with the first defender,
but has a different initial position.

Our primary strategy is to constantly keep the ball moving down-field. To
encourage this, the four general players (non-goalies) are constantly communi-
cating over Wi-Fi, sharing their global position, relative distances to the ball,
and current roles. Our code works in such a way that the role of Attacker
changes often during a game, based on ETA’s to the game ball.

3

Supporter

2
Attacker

E

(a) The ball is closest to Nao 2, and so it is currently the Attacker.
Nao 3 sights the ball, but because its distance is second farthest away,
it becomes the Supporter.

3

Attacker

2

Supporter

E

(b) After the ball changes position and becomes closest to 3,
it now becomes the Attacker. The Nao that was formerly an
attacker, now being second furthest away, assigns itself the
role of Supporter.

Fig. 16. Illustration of how roles change between team members.

21

Take for example, this situation. Following kickoff, Nao #2, initially assigned
as the Attacker, gets the ball into the opponent half. An opponent defender
steals the ball away, and with a powerful kick, sends it back into our half. If
Defender Two (Nao #5) finds the ball stopped closest to him, he will inform the
team that he is switching into the Attacker role. The other three general players
will then check how far they are to the ball, and assign themselves roles in order
of ascending distance to the ball. The next closest robot, regardless of number
and initial role, would become the new Supporter, while the two furthest away
would become Defenders One and Two.

In this way, the team can reach and move the ball much quicker and with
more efficiency by behaving as a dynamic unit.

7 Summary

While the UPennalizers broke their annual tradition of making it to the quarter-
final matches every year, the team has continued to keep pace with the rest of
the league. With a new batch of undergraduates ready to pass on their knowl-
edge to new team members in the fall, the UPennalizers’ future looks as bright
as ever.

Our 2013 demo code has been released on our website under the GNU public
license, and we hope that it will be of use to future teams.

22

