
UPennalizers

Robocup 2014 Standard Platform League

Team Description Paper

Christopher Akatsuka, Yizheng He, Jianqiao Li,
Tatenda Mushonga, Sagar Poudel, Junda Zhu, and

Dr. Daniel Lee

General Robotics Automation, Sensing and Perception (GRASP)

Laboratory

University of Pennsylvania

Abstract

This paper presents the organization and architecture of a team of
soccer-playing Nao robots developed by University of Pennsylvania’s Robocup
SPL team. It also documents the e↵orts gone into improving the code base
for the 2014 competitive season. All sensory and motor functions are pro-
totyped and run in Lua on the embedded on board processors. High-level
behaviors and team coordination modules are implemented by Lua using
state machines. The locomotion engine allows for omni-directional mo-
tions and uses sensory feedback to compensate for external disturbances.
The cognition module helps robot to detect landmarks and localize in
a symmetric environment. Through the year, improvements were made
across all of the various modules.

1



1 Introduction

In 1999, two years after the first international Robocup meet, the University
of Pennsylvania formed the UPennalizers autonomous robot soccer group and
began stepping up to the challenges put forth by the competition. While the
league was still utilizing four-legged Sony Aibos, the UPennalizers made the
quarterfinal rounds every year through 2006 before taking a brief two-year hia-
tus in 2007. The team reformed and returned in 2009 to begin competing in
the Standard Platform League with Aldebaran Naos, taking on bipedal motion
alongside improved vision techniques and advanced team behaviors.

Continuing its streak of making the international quarterfinals through 2012,
the UPennalizers were challenged in 2013 with training a team of entirely new
undergraduates without its seasoned veterans from previous years. In 2014, with
existing veterans and more talents joining, the team modified the locomotion
engine and rebuilt the cognition module. It went on to take first place at the
2014 US Open, and made it to the knock-out phase of Robocup 2014 in Brazil,
ranking 9 of 20.

2 Software Architecture

A high-level description of the software architecture for the Naos is shown in
Figure ??. The current architecture is an expansion upon the previous years
work. It uses Lua as a common development platform to interface between all
modules.

The system maintains a constant update speed of 100Hz, and is decoupled
into two separate pipelines. The main process handles motion control and be-
havior control, while an auxiliary process is dedicated solely to cognition pro-
cessing. This decision allows for more e�cient handling of the Nao’s on-board
single-core Intel Atom Z530 clocked at 1.6 GHz. The cognition engine runs o↵ of
the remaining processing power not used by the main modules, and as a result,
the Naos were noted to be much more stable and robust than in previous years.

Low-level interactions with hardware are implemented using compiled C li-
braries in conjunction with the Nao’s on-board hardware controller (NaoQi) or
custom controllers. These in turn, are called via Lua scripts, and allow for con-
trol over motor positions, motor sti↵nesses, and LED’s. Sensory feedback is also
handled similarly, allowing users to get data from a variety of sources such as
the Nao’s two on-board cameras, foot weight sensors, the inertial measurement
unit (IMU), and the ultrasound microphones.

2



Fig. 1. Block Diagram of the Software Architecture.

Inter-process communication is accomplished via shared memory. Important
information such as ball distance, position on the field, and game state are
examples of shared memory variables. Any module can write and read to shared
memory. In addition, any operator connected to a Nao via secure shell can
monitor the data stored in the shared memory module without any change or
impact on the running system, allowing for real-time on-the-fly debugging and
analysis through either Lua or MATLAB.

The main modules accessed by our Lua routines are as follows, layered hi-
erarchically:

Camera Direct interface to the cameras located in the forehead (upper) and
mouth (lower); controls switching frequency and bundling of images in
YUYV format.

Vision Interprets incoming images; based on the user-created color table and
camera parameters, the module passes on information relating to the pres-
ence and relatively location of key objects such as the ball, defending goal
posts, attacking goal posts, field lines, field corners, and other robots.

3



World Models the robot’s state on the field, including pose and filtered ball
position;

Body Handles physical sensory information and functions; reads joint encoders,
IMU data, foot weight sensors, battery voltage, and chest button presses,
but can also set motor positions, sti↵nesses, and LED’s.

Motion Dictates general movements on the Nao; i.e. sitting, standing, diving

Walk Controls omni-directional locomotion; takes in hand-tuned parameters
and applies them to a zero-moment point (ZMP) based walk engine.

Kick Maintains intra-robot stability during kick movements; di↵erent kick set-
tings can be loaded to allow for powerful standing kicks, quick walk-kicks,
and decisive side-kicks.

Keyframes Lists scripted positions for certain movements; getting up from
front and back falls is done by feeding the Body module a series of motor
positions and timings.

Game State Machine Receives and relays information from the Game Con-
troller; information from the GSM such as game state determines behavior
among all robots on the field during certain times of the game.

Head State Machine Controls head movements; di↵erent conditions deter-
mine when to switch into ball searching, ball tracking, and simply looking
around.

Body State Machine Dispatches movement instructions; conditions from all
previous modules will cause the Nao to switch between chasing after far
away balls, performing curved approaches to line up for shots, dribbling,
and performing kicks when the ball is close enough.

3 Motion

Motion is controlled by a dynamic walk module combined with predetermined
scripted motions. One main development has been a bipedal walk engine that
allows for fast, omni-directional motions. IMU feedback is used to modulate
the commanded joint angles and phase of the gait cycle to provide for further
stability during locomotion. In this way, minor disturbances such as carpet
imperfections and bumping into obstacles do not cause the robot to fall over.
The robot has several powerful kick motions using pre-defined keyframes and a
ZMP walk-kick for quicker reaction. We are also using keyframes for our get-up
motions under di↵erent battery levels.

4



3.1 Walk

Fig. 2. Overview of the walk controller

The walk engine generates trajectories for the robot’s center of mass (COM)
based upon desired translational and rotational velocity settings. The module
then computes optimal foot placement given this desired body motion. Inverse
kinematics (IK) are used to generate joint trajectories so that the zero moment
point (ZMP) is over the support foot during the step. This process is repeated
to generate alternate support and swing phases for both legs.

3.1.1 Step controller

The step controller determines the parameters of each step give di↵erent com-
mended velocity and hardware parameters. Each step is defined as

STEP

i

= {SF, t
step

, L

i

, T

i

, R

i

, L

i+1, Ti+1, Ri+1}

where SF denotes the support foot, t
step

is the duration of the step, L
i

, R

i

, T

i

and L

i+1, Ri+1, Ti+1 are the initial and final 2D poses of left foot, right foot and
torso. L

i

, R

i

, T

i

are the final poses from the last step, L
i+1, Ri+1 are calculated

using the commended velocity. Foot reachability and self-collision constraints
are also considered given di↵erent configurations in the pre-defined walk setting
file, as shown below.

5

Walk Controller!!!

Skipped motion for now, go back later



Fig. 3. Example parameters for one of our walk files.

To get the most stable posture, the center of mass should lies on the middle
point of two feet. Thus the target torso pose T

i+1 is set to the midpoint of
L

i+1 and R

i+1. Given the initial and final position of the feet and torso, the
reference ZMP trajectory p

i

(�) as the following piecewise-linear function for the
left support case

p

i

(�) =

8
><

>:

T

i

(1� �

�1
) + L

i

�

�1
0  � < �1

L

i

�1  � < �2

T

i

(1� 1��

1��2
) + L

i

1��

1��2
�2  � < 1

where � is the walk phase and �1,�2 are the timing parameters determining the
duration of single support phase and double support phase.

3.1.2 Trajectory controller

The trajectory controller generates torso and foot trajectories for the current
step. We first define �

single

as the single support walk phase

�

single

=

8
<

:

0 0  � < �1
���1

�2��1
�1  � < �2

1 �2  � < 1

We then define a parameterized trajectory function

f

x

(�) = �

↵ + ��(1� �)

to generate the foot trajectories

L

i

(�
single

) = L

i+1fx(�single

) + L

i

(1� f

x

(�
single

))

R

i

(�
single

) = R

i+1fx(�single

) +R

i

(1� f

x

(�
single

))

6



The torso trajectory x

i

(�) is calculated by modeling the robot as a inverted
pendulum. Thus

p = x� t

ZMP

ẍ

With the reference ZMP trajectory we defined before, the x
i

(�) during the step
with zero ZMP error should be

x

i

(�) =

8
>><

>>:

p

i

(�) + a

i

e

�
�ZMP + b

i

e

� �
�ZMP � �

ZMP

m

i

sinh

���1

�ZMP
0  � < �1

p

i

(�) + a

i

e

�
�ZMP + b

i

e

� �
�ZMP

�1  � < �2

p

i

(�) + a

i

e

�
�ZMP + b

i

e

� �
�ZMP � �

ZMP

n

i

sinh

���1

�ZMP
�2  � < 1

where phi

ZMP

= t

ZMP

/t

STEP

. m

i

, n

i

are ZMP slopes defined as following for
left support case

m

i

=
L

i

� T

i

�1
, n

i

= �L

i

� T

i+1

1� �2

and for right support case

m

i

=
R

i

� T

i

�1
, n

i

= �R

i

� T

i+1

1� �2

a

i

, b

i

can then be calculated given the boundary condition x

i

(0) = T

i

and
x

i

(1) = T

i+1. The resulting ZMP and torso trajectory are shown below

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Phase

P
o
si

tio
n

 

 

Reference ZMP trajector
Torso trajectory

Fig. 4. An example for a reference ZMP trajectory and corresponding torso
trajectory.

7



After we get the body pose and feet poses, the inverse kinematics module is
used to calculate angles for each joints so that the robot can actually walk as
we desired.

3.1.3 Feedback controller

The feedback controller takes in the sensor information from the robot during
the walk and tries to stabilize it by controlling the ankle joints, knee joints and
hip joints. Right now we are using the roll and pitch angles as inputs for several
simple PD controllers. Knee and hip joints are used to overcome pitch errors
while ankle joints are used for roll error. If the pitch angle or roll angle is higher
than a threshold, the walk motion will be stopped. This can be caused by other
robot pushing our robot during a game.

3.2 Kicks

Our kicks this year are a combination of scripted keyframes and ZMP-based
kicks. Of our three kicks – standing, walk, and side – only the walk-kick utilizes
the new ZMP engine. The old-fashioned style kicks are created by specifying
motor positions and timings, and must be carefully tuned by hand in order
to ensure balance, stability, and power. The new kicks are inherited from our
merge with Team DARwIn. Similar to how the walk engine calculates joint
positions in response to motion requests of the COM and ZMP, our newer kick
calculates the way that the robot needs to balance in order to perform faster
and more powerful kicks.

3.3 Get up

Our get up motions are all defined by several keyframe files. A keyframe file
consists of a series of frames, snapshots of the 22 motor positions along with
a timing by which those positions must be reached from the previous frame.
Though the motors natively read and write radians to their encoder, we use
degrees and convert them later for better readability.

angles = vector.new({

0.1, 25.5,

109.8, 11.0, -88.9, -21.4,

-13.7, -0.3, 17.1, -5.6, 5.2, 7.6,

0.0, -1.8, 14.6, -1.1, 4.9, -2.7,

109.9, -10.2, 88.7, 19.9,

})*math.pi/180,

duration = 0.400;

The motors in order are:

8



1. HeadYaw

2. HeadPitch

3. LShoulderPitch

4. LShoulderRoll

5. LElbowYaw

6. LElbowRoll

7. LHipYawPitch

8. LHipRoll

9. LHipPitch

10. LKneePitch

11. LAnklePitch

12. LAnkleRoll

13. RHipYawPitch

14. RHipRoll

15. RHipPitch

16. RKneePitch

17. RAnklePitch

18. RAnkleRoll

19. RShoulderPitch

20. RShoulderRoll

21. RElbowYaw

22. RElbowRoll

These keyframes are hand-tuned based upon experimentation. To prolong
the life of our robots, we do most of the heavy keyframe testing in Webots and
then port it to the robots and perform final checks to verify full functionality.
Some keyframes can make the robot get up is 6 seconds, which is much faster
than some other get up motions. However, the get up motion performance is
highly depends on the battery level and the hardware condition. During our
test, many robots cannot get up with fast motions if their battery levels are
lower than 8, or if they have a broken joint. To avoid keep picking up our
robots during a real game because they cannot get up, we set each robot to
have two get up motions. The default get up motion is set to be the fast one.
If the battery level is lower than a threshold, or the robot have failed to get up
once, it will switch to the slow get up motion. This change helped us a lot in
Joao Pessoa.

4 Cognition

The cognition module acquires visual information from cameras and returns
locations of key objects on the field, as well as the position of the robot itself.
Figure ?? shows the framework of the cognition module.

9



Fig. 5. Block Diagram of the Cognition Module.

Each Aldebaran Nao robot has two cameras on board, also know as the
top (forehead) and bottom (mouth) camera. They feed images in stream at 30
frames per second each. Images from the top and bottom cameras are processed
simultaneously by two processes. Di↵erent object detection routines are run on
images from di↵erent cameras to improve e�ciency. An arbitrator process co-
ordinates intermediate results from the two processes and runs the localization
module. The final results from the cognition module are sent to behavior con-
trols.

4.1 Image Processing

Algorithms used for processing visual information are the same for both camera
processes, and they are similar to those used by other Robocup teams.

The first step is color segmentation. A Gaussian mixture model is used to
partition the YCbCr color cube into seven colors:

• Orange (Ball)

• Yellow (Goals)

10



• Green (Field)

• White (Lines)

• Pink (Robot Jerseys)

• Blue (Robot Jerseys)

• Black (Others)

The actual calibration process follows a supervised learning routine: images
taken from both cameras are trained to form a color look-up table. While the
robot is running, the image processing pipelines segment raw images into dis-
cretely colored images by classifying individual pixels based upon their mapped
values in the color table. The segmented images are further shrunk to lower-
resolution colored labels by merging adjacent pixels. Figure ?? to ?? show each
step of color segmentation.

(a) Raw Image

(b) Segmented Image (c) Colored Label

Fig. 6

11



The next step is object detection on colored labels. Connected regions are
recognized as either connected components or edge regions, and objects are
recognized from the statistics - such as the bounding box of the region, the
centroid location, and the chord lengths in the region - of the colored regions.
In this manner, the location of the ball and goal posts are detected.

Field line recognition follows a slightly more complicate routine. Once all
white pixels surrounded by green are located, a Hough transform is used to
search for relevant line directions. In the Hough transform, each possible line
pixel (x, y) in the image is transformed into a discrete set of points (✓

i

, r

i

) which
satisfy:

x cos ✓
i

+ y sin ✓ = r

i

(1)

The pairs (✓
i

, r

i

) are accumulated in a matrix structure where lines appear
as large values as shown in Figure ??. After these lines are located, they are
identified as either interior or exterior field lines based upon their position.

Fig. 7. Hough transformation for field line detection in images.

4.2 Self-Localization

The problem of knowing the location of robots on the field is handled by a
probabilistic model incorporating information from visual landmarks such as
goals and lines, as well as odometry information from the e↵ectors. Recently,
probabilistic models for pose estimation such as extended Kalman filters, grid-
based Markov models, and Monte Carlo particle filters have been successfully
implemented. Unfortunately, complex probabilistic models can be di�cult to
implement in real-time due to a lack of processing power on robots. This is-
sue is addressed with a pose estimation algorithm that incorporates a hybrid
Rao-Blackwellized representation that reduces computational time, while still
providing a high level of accuracy. The algorithm models the pose uncertainty
as a distribution over a discrete set of heading angles and continuous transla-
tional coordinates. The distribution over poses (x, y, ✓), where (x, y) are the
two-dimensional translational coordinates of the robot on the field, and ✓ is the
heading angle, is first generically decomposed into the product:

12

Rachel Han


Rachel Han


Rachel Han


Rachel Han


Rachel Han


Rachel Han


Rachel Han


good youtube tutorial about 
hough transform algorithm 
for line detection

still do not understand completely
Kalman filter
grid-based Markov models
Monte Carlo particle filter

Too much details, ignored for now
go back if necessary



P (x, y, ✓) = P (✓)P (x, y|✓) =
X

i

P (✓
i

)P (x, y, |✓
i

) (2)

The distribution P (✓) is modeled as a discrete set of weighted samples {✓
i

},
and the conditional likelihood P (x, y|✓) as simple two-dimensional Gaussian.
This approach has the advantage of combining discrete Markov updates for the
heading angle with Kalman filter updates for translational degrees of freedom.

Fig. 8. Rao-Blackwellized probabilistic representation used for localization.

This algorithm enables robots to quickly incorporate visual landmarks and
motion information to consistently estimate both the heading angle and trans-
lation coordinates on the field as shown in Figure ??. Even after the robots are
lifted (’kidnapped’) by the referees, they will quickly re-localize their positions
when they see new visual cues.

4.2.1 Particle Initialization

The localization algorithm utilizes 200 particles to estimate the position of the
robot. Properly initializing the positions of the particles helps improve the
accuracy of the localization algorithm. Before the game starts, the particles are
initialized on the sides of the defending half of the field, as shown in Figure ??.
In the Set state, if the robot is not manually replaced, its particles are initialized
near the possible initial positions defined in our game strategy. Besides, during
the game, when a robot falls down, its localization particles’ heading angles are
reinitialized.

13



Fig. 9. Initialization of particles before game starts.

4.2.2 Odometry, Landmark Observation and Re-sampling

A Kalman filter is implemented to track the continuous change on the position
and weight of each particle. The filtering is a product of two steps: the motion
model update and the measurement update. The motion model update - also
referred to as the odometry update - utilizes the robot kinematics to update the
particle filter as the robot walks around the field. Given the joint angles of the
robot, forward kinematics is used to compute the location of the robot’s feet as
it walks. The change in translation and rotation of the body of the robot are
computed based on the position of the feet, as shown in Figure ??, and used to
update the particle filter.

Fig. 10. Visualization of the odometry calculation after one step.

a set of camera parameter values. These parameters should make the top
and bottom camera visually appear as similar as possible because both

The measurement model refines this estimate using sensory inputs, such as
vision-based landmark detection. The measurement model incorporates posi-
tions of landmarks to adjust the particle positions and their weights in the filter.

14



Positions of landmarks are weighted based upon their reliability. For instance,
goal post detection is considered convincing and used to correct both the po-
sition and the direction of the robot. Meanwhile, corner and line detections
are only used to correct the direction due to large variance in their position
calculation.

The algorithm re-samples every 0.1 seconds. A stratification method is used
to redraw all particles so that the ones with higher weight will stay. Figure ??
illustrate the result of self-localization.

Fig. 11. The robot weighs di↵erent landmark positions to establish an
accurate estimation of its position on the field.

4.2.3 Error Correction

One great challenge with self-localization in the Standard Platform League is the
symmetric field. Under ideal circumstances where the robot’s starting position
is known, the basic particle filter approach alone is enough to keep track of the
correct robot pose. However, noise in the motion model, inevitable false positive
detections of landmarks, and falling down, will all eventually cause the robot
to converge on a pose that is symmetrically opposite the true location. A team
correcting mechanism based on goalie ball information is introduced.

Since the goalie mostly stays in penalty box and close to the defending goal
posts, it should be more confident about the location of itself and the ball than
other robots on field. The correcting mechanism works when a player robot and
the goalie see the ball simultaneously but believe the ball is on di↵erent sides
of the field. Under such circumstances, it is very likely that the player robot’s
localization is flipped and its particles will be flipped back against the center of
the field.

Moreover, robots are very likely to generate localization error when they fall
over near the center of the field. The correcting mechanism labels these robots
as ”confused players”, which will not make direct shots to goal. Instead, they
will dribble or slightly kick the ball until the goalie sees the ball and confirms
their positions.

15

Rachel Han


Rachel Han




4.3 Debugging Tools

4.3.1 Monitoring

It is crucial that developers know what the robot perceives at each stage of
cognition. The monitor program is designed for this purpose. It receives data
packets from an active robot and display them. The transmitted data include:

• System Time Stamps

• Images

• Color-segmented Images

• Location of Itself and Objects

• Cognition-related Shared Memory

A GUI is designed to display these information, as shown in Figure ??. De-
velopers can view the images (raw and segmented) from both on-board cameras
and eye-ball check the correctness of object detections. Important debug mes-
sages are listed on the right side to provide more information on details of the
cognition process.

Fig. 12. Monitor

The monitor also supports logging functionality, which stores the real time
cognition information in a local file. A vision simulator is designed to open and
run image processing on these log files. As the result, debugging can be done
o↵-line from a robot, which greatly improves development e�ciency.

16



4.3.2 Camera Calibrator

Since cognition depends highly on the quality of images from the cameras, cali-
brating the camera parameters (i.e. Exposure, Contrast, and Saturation) is an
important task. A script is written to facilitate the process. During calibrating,
developers can change camera parameters by key presses and check the quality
of images through the Monitor program. Figures ?? and ?? are screen shots of
the script.

(a) Top camera (b) Bottom camera

Fig. 13. Example camera parameters.

4.3.3 Colortable Tool

The quality of color segmentation is also a key factor for successful cognition
process. Therefore, another calibration tool is required to build robust color
look-up tables. The colortable tool loads in logged images from the on-board
cameras for developers to manually train the color. Developers can monitor
the quality of the colortable throughout the calibration process. Figure ?? is a
screen shot of the tool.

Fig. 14. The Colortable Tool

17



5 Behavior

Finite state machines (FSMs) dictate the behaviors robots and allow them to
adapt to constantly changing conditions on the field. The implementation of an
FSM consists of a series state definitions and one arbitrator file that defines the
transitions between states.

Each state consists of three stages: entry, update and exit. The entry

and exit stages specify actions to be taken when the robot first enters a state
or finally completes a state. During the update stage, which is in between, the
robot constantly cycles through a routine. Usually it moves on the field while
querying cognition information, until certain conditions are met. For instance,
in state BodySearch, the robot rotates in place until either it detects the ball or
it times out after not seeing the ball for 5 seconds. In the first case, it transits
into a state of chasing the ball; in the other case, the robot transits into a state
of going to the center of the field (where it has a better chance of detecting the
ball).

5.1 The Body Finite State Machine

The Body Finite State Machine (BodyFSM) is the main behavior control mod-
ule. It regulates robot movements and kicks during the game. Two sets of state
machines are implemented, one for normal players and the other for the goalie.
The key di↵erence is that the goalie needs hold its position and stay in the
penalty box in most cases while field players need to walk around and chase the
ball.

5.1.1 BodyFSM for Normal Players

Figure ?? shows the transitions of states for a normal robot player. It is followed
by brief descriptions of the states. The basic routine is: Search for ball !
Approach the ball ! Dribble of Make a Shot.

18



Fig. 15. Body State Machine for a non-goalie player.

bodyApproach Align for kick.

bodyGotoCenter Return to the cen-
ter of the field.

bodyKick Perform di↵erent type of
kicks.

bodyOrbit Make fine adjustments to
trajectory before kicking.

bodyPosition Main body state;
most states will transition back
here.

bodySearch Revolve and search for
the ball.

bodyStart Initial state when the
main code is started up.

bodyStop Stops the robot com-
pletely.

bodyUnpenalized Commands the
robot to stand back up and walk
into the field after being unpe-
nalized.

One important note on BodyFSM is the approaching method. The simplest
implementation is to make the robot walk straight to the ball and orbit around
it until it faces the attacking goal (ready to make a shot). This method is robust
but too slow in a game scenario, where the robots are supposed to approach
the ball as fast as possible. In recent years, the curve approach method is
introduced, as illustrated in ??. Under this implementation, the robot keeps
adjusting when approaching the ball. These adjustments are based upon the
distance between the ball and the robot, as well as the projected kick direction.
As the result, the robot walks in a faster and more natural curve when chasing
the ball.

19



(a) In direct approach the robot

spends too much time sidestepping

around the ball.

(b) The curve approach allows the

robot to perform its angle rotation

while walking towards the ball.

Fig. 16. Di↵erence between our original and our improved approach.

5.1.2 BodyFSM for the Goalie

Figure ?? shows the transitions of states for a golaie. It is followed by brief de-
scriptions of the states. The basic routine is: Track the ball! Approach the

ball if it is near to own goal post! Kick it away from the gaol post.

Fig. 17. Body State Machine for a goalie.

20



bodyStart Initial state when the
main code is started up.

bodyAnticipate Predict the near-
future position of Goalie.

bodyApproach Align for kick.

bodyGotoCenter Return to the cen-
ter of the field.

bodyKick Perform stationary kick.

bodyWalkKick Perform a kick while
in motion.

bodyPositionGoalie Main body
state; most states will transition
back here.

bodySearch Revolve and search for
the ball.

bodyStop Stops the robot com-
pletely.

bodyUnpenalized Commands the
robot to stand back up and walk
into the field after being unpe-
nalized.

We made some changes recently in goalie behaviour. Instead of approaching
the ball when ball is less than threshold value from Goalie, the Goalie now
approaches a ball if it is near some distance from goal post. This helped Goalie
keep highly localized and defend goal post well. Also, Goalie returns to previsous
position or new best position rather than chasing the ball.

5.2 The Head Finite State Machine

The Head Finite State Machine (HeadFSM) controls the robot head movements.
During the game, the robot has to move its head (changes yaw and pitch)
e�ciently to better and faster locate objects on field. The head movements are
usually independent from the body movement, and therefore a separate state
machine is designed.

Figure ?? shows the HeadFSM (same for goalie and field players), followed
by brief descriptions of the states.

21



Fig. 18. Head State Machine
Left : during the game / Right: while waiting for game start

headKick During bodyApproach,
keep the head tilted down to-
wards the ball.

headKickFollow Follow the ball af-
ter a kick.

headLookGoal Look up during ap-
proach to find the attacking goal
posts.

headReady Look for ball while wait-
ing for game start

headReadyLookGoal Look for goal
while waiting for game start

headScan Look around for the ball.

headStart Initial state after the
game state changes to ’Playing’.

headSweep Perform a general
search, with a priority on finding
goal posts.

headTrack Track the ball, moving or
stationary.

5.3 Team Play

Robust single robot behavior is not su�cient to have good performance during
robot soccer games. All players on the field have to coordinate and function as
a team. The team play module regulates team behaviors so robots can make
e�cient use of the space on field. The infrastructural base of team play is
the WiFi-based communication between robots, where all players share basic
cognition information (such as their own locations, the perceived ball locations,
etc.) The essence of team play is a role switching mechanism which helps robots
to stay at di↵erent locations on the field, contributing to both attacking and

22



defending. There are five defined roles:

Goalie 1 Stays in and around the defensive goal to clear
the ball when it comes close.

Attacker 2 Goes directly towards the ball and kicks.
Supporter 3 Follows the attacking robot up-field, but stays

at a respectable distance away—usually about
midfield.

Defender 4 The defending robot positions itself between
the ball and defensive goal area.

Defender Two 5 Performs double duty with the first defender,
but has a di↵erent initial position.

3

Supporter

2
Attacker

E

(a) The ball is closest to Robot 2, the currently Attacker. Robot 3

sights the ball and is assigned Supporter.

3

Attacker

2

Supporter

E

(b) The opponent robot kicks the ball and the ball moves

toward Robot 3, which becomes the new Attacker. The for-

mer Attacker Robot 2 is assigned Supporter due to further

distance from the ball.

Fig. 19. Simple Example of Role Switching.

The primary strategy is to keep the ball moving down-field. To encour-
age this, the four general players (non-goalies) are constantly switching their
roles. According to the shared cognition information, each robot calculates its

23



estimated time of approaching (ETA). ETA is a function of numeral factors, in-
cluding if the robot is fallen, if the robot sees the ball, the distance between the
robot and the ball, walking speed, etc. The robot with the smallest ETA will be
assigned the attacker, and other robots will be assigned defender or supporter
based on their locations on field. Figure ?? and ?? is a illustration of dynamic
role switching during the game.

6 Summary

While the UPennalizers broke their annual tradition of making it to the quarter-
final matches every year, the team has continued to keep pace with the rest of
the league. With a new batch of undergraduates ready to pass on their knowl-
edge to new team members in the fall, the UPennalizers’ future looks as bright
as ever.

24


