Proximal Methods for Optimization with Sparsity-inducing Norms
Group Learning Presentation

Xiaowei Zhou

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology

2011-10-21
Outline

1 Background

2 Proximal Methods
 - Overview
 - Convergence
 - Computation of Proximal Operator

3 ProxFlow algorithm for group-sparsity

4 Discussion
Problem Setting

\[
\min_{w \in \mathbb{R}^p} f(w) + \lambda \Omega(w) \quad \text{.}
\]

data fitting \quad \text{sparsity inducing}

\(f : \mathbb{R}^p \to \mathbb{R} \) is convex differentiable
\(\Omega : \mathbb{R}^p \to \mathbb{R} \) is convex but nonsmooth

\(\ell_1 \)-norm : \quad \|w\|_1 \triangleq \sum_{j=1}^{p} |w_j| \\
\(\ell_1/\ell_q \)-norm : \quad \|w\|_{\ell_1/\ell_q} \triangleq \sum_{g \in G} \eta_g \|w|_g \|_q \\
nuclear norm : \quad \|w\|_* \triangleq \sum_{j=1}^{r} \sigma_j \)
Generic Methods

Generic convex optimization methods:

- Subgradient descent

\[w_{t+1} = w_t - \alpha(s + \lambda s'), \text{ where } s \in \partial f(w_t), \ s' \in \partial \Omega(w_t) \]

- Reformulation as standard solvable convex programs (LP, QP, SOCP, SDP), e.g. Lasso can be formulated as:

\[
\min_{w_+,w_- \in \mathbb{R}_+^p} \frac{1}{2} \|y - Xw_+ - Xw_-\|_2^2 + \lambda(1^T w_+ + 1^T w_-) \tag{2}
\]

- General-purpose toolboxes can be used (e.g. CVX).

- Blind to problem structure, tend to be slow and memory-consuming.
Outline

1 Background

2 Proximal Methods
 - Overview
 - Convergence
 - Computation of Proximal Operator

3 ProxFlow algorithm for group-sparsity

4 Discussion
Proximal methods

In proximal methods, (1) is optimized by iteratively solving the following problem:

\[
\min_{w \in \mathbb{R}^p} \quad f(w_0) + (w - w_0)^\top \nabla f(w_0) + \lambda \Omega(w) + \frac{L}{2} \|w - w_0\|^2_2.
\] (3)

- The first two terms linearly expand \(f\) at \(w_0\).
- The last term keeps the solution in a neighborhood where the current linear approximation holds.
- \(L > 0\) is an upper bound on the Lipschitz constant of \(\nabla f\).
Definition: Proximal Operator

The **proximal operator** associated with the regularization $\lambda \Omega$ is defined as the function that maps a vector u in \mathbb{R}^p onto the unique solution of:

$$
\min_{v \in \mathbb{R}^p} \frac{1}{2} \| u - v \|_2^2 + \lambda \Omega(v),
$$

(4)

The operator is usually denoted as $\text{Prox}_{\lambda \Omega}(u)$

Example:

- When Ω is the ℓ_1-norm, the proximal operator is the well-known elementwise soft-thresholding operator:

$$
\forall j \in [1, \cdots, p], \quad u_j \mapsto \text{sign}(u_j)(|u_j| - \lambda)_+ = \begin{cases}
0 & \text{if } |u_j| \leq \lambda \\
\text{sign}(u_j)(|u_j| - \lambda) & \text{otherwise}.
\end{cases}
$$
Algorithm

Since (3) can be rewritten as:

\[
\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w - (w_0 - \frac{1}{L} \nabla f(w_0))\|^2 + \frac{\lambda}{L} \Omega(w),
\]

(5)

the proximal method can be written as:

Algorithm 1: proximal method to solve (1)

repeat
 \[w \leftarrow \text{prox}_{\frac{\lambda}{L} \Omega}(w - \frac{1}{L} \nabla f(w)) \]
until Convergence

Remark. If \(\lambda = 0 \), it turns to be Gradient Descent.

Questions:

1. How to compute the proximal operator?
2. How about the convergence of the algorithm?
Outline

1. Background

2. Proximal Methods
 - Overview
 - Convergence
 - Computation of Proximal Operator

3. ProxFlow algorithm for group-sparsity

4. Discussion
Assumption

We assume that f has Lipschitz continuous gradient:

$$\|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|. \quad (6)$$

Remark: It means the change of function gradient is upper-bounded.

Lemma

The above condition is equivalent to

$$f(w) \leq f(v) + \langle \nabla f(v), w - v \rangle + \frac{L}{2}\|w - v\|^2. \quad (7)$$
Two lemma

Following two are important to the proof of convergence:

Lemma (Sandwich)

If $\tilde{F}(w; v)$ is the linear approximation of $F(w) = f(w) + \lambda \Omega(w)$ in v, w.r.t. $f(w)$, that is $\tilde{F}(w; v) = f(v) + \langle \nabla f(v), w - v \rangle + \lambda \Omega(w)$, then:

$$F(w) \leq \tilde{F}(w; v) + \frac{L}{2} \|w - v\|^2 \leq F(w) + \frac{L}{2} \|w - v\|^2. \quad (8)$$

Lemma (3-point property)

If $\hat{w} = \arg\min_w \frac{1}{2} \|w - w_0\|^2 + \phi(w)$, then for any w:

$$\phi(\hat{w}) + \frac{1}{2} \|\hat{w} - w_0\|^2 \leq \phi(w) + \frac{1}{2} \|w - w_0\|^2 - \frac{1}{2} \|w - \hat{w}\|^2. \quad (9)$$
Proof of the convergence rate I

- $F(w_t)$ is monotone non-increasing for $t = 0, \cdots, T$:

 $$F(w_{t+1}) \leq \tilde{F}(w_{t+1}; w_t) + \frac{L}{2} \|w_{t+1} - w_t\|^2$$
 Sandwich-left

 $$\leq \tilde{F}(w_t; w_t) + \frac{L}{2} \|w_t - w_t\|^2 = F(w_t)$$
 Definition

- Also, we have

 $$F(w_{t+1}) \leq \tilde{F}(w_{t+1}; w_t) + \frac{L}{2} \|w_{t+1} - w_t\|^2$$
 Sandwich-left

 $$\leq \tilde{F}(w^*; w_t) + \frac{L}{2} \|w^* - w_t\|^2 - \frac{L}{2} \|w^* - w_{t+1}\|^2$$
 3-point property

 $$\leq F(w^*) + \frac{L}{2} \|w^* - w_t\|^2 - \frac{L}{2} \|w^* - w_{t+1}\|^2$$
 Sandwich-right
Proof of the convergence rate II

Define \(\epsilon_t = F(w_t) - F(w^*) \), so that

\[
\epsilon_{t+1} \leq \frac{L}{2} \| w^* - w_t \|^2 - \frac{L}{2} \| w^* - w_{t+1} \|^2
\]

\[
T \epsilon_t \leq \sum_{t=0}^{T-1} \epsilon_{t+1} \leq \frac{L}{2} \| w^* - w_0 \|^2 - \frac{L}{2} \| w^* - w_t \|^2 \leq \frac{L}{2} \| w^* - w_0 \|^2
\]

\[
\epsilon_t \leq \frac{L \| w^* - w_0 \|^2}{2T}
\]

(10)

- At iteration \(T \), Algorithm 1 yields a solution \(w_T \) that satisfies:

\[
F(w_T) - F(w^*) \leq \frac{L \| w^* - w_0 \|^2}{2T}.
\]

- Algorithm 1 has a convergence rate of \(O(1/T) \).
Outline

1. Background

2. Proximal Methods
 - Overview
 - Convergence
 - Computation of Proximal Operator

3. ProxFlow algorithm for group-sparsity

4. Discussion
Definition: Dual Norm

The dual norm Ω^* of the norm Ω is defined by:

$$\Omega^*(z) = \max_{w \in \mathbb{R}^p} z^T w, \quad s.t. \quad \Omega(w) \leq 1$$

(11)

Examples:
- ℓ_2-norm is self-dual
- ℓ_1-norm is dual to ℓ_∞-norm
Dual proximal operator: In the case where Ω is a norm, the following problem is dual to the proximal problem in (4):

$$
\max_{v \in \mathbb{R}^p} \quad -\frac{1}{2} \|v - u\|^2 + \|u\|^2, \\
\text{s.t.} \quad \Omega^*(v) \leq \lambda.
$$

(12)

Let $\text{Proj}_{\Omega^* \leq \lambda}$ be the projector on the ball of radius λ associated with Ω^*, then $\text{Proj}_{\Omega^* \leq \lambda}(u)$ is the unique solution to the problem (12) and it has the following relation with $\text{Prox}_{\lambda\Omega}$:

$$
\text{Prox}_{\lambda\Omega} = I - \text{Proj}_{\Omega^* \leq \lambda}
$$

(13)
Definition: Dual Cone
Assume K is a convex cone, the dual cone K^* is defined as:

$$K^* = \{ z \in \mathbb{R}^p : z^T x \geq 0, \ \forall x \in K \}$$

Primal:

$$\min_x f(x), \ \text{s.t.} \ Ax + b \preceq_K 0$$

Lagrangian:

$$L(x, \lambda) = f(x) + \lambda^T (Ax + b), \ \lambda \succeq_{K^*}$$

Dual:

$$\max_{\lambda} \inf_x L(x, \lambda), \ \text{s.t.} \ \lambda \in K^*$$
Typical examples

- When Ω is the ℓ_1-norm, the solution is:

 \[u \mapsto u - \text{Proj}_{\|\cdot\|_{\infty} \leq \lambda}(u), \]

 which gives the elementwise soft-thresholding:

 \[\forall j \in [1, \cdots, p], u_j \mapsto \text{sign}(u_j)(|u_j| - \lambda)_+. \]

- When Ω is the ℓ_1/ℓ_2-norm with nonoverlapping groups, the proximal problem is *separable* in every group, and the solution is a group-thresholding operator:

 \[\forall g \in G, u|_g \mapsto u|_g - \text{Proj}_{\|\cdot\|_2 \leq \lambda}(u|_g) = \begin{cases} 0 & \text{if } \|u|_g\|_2 \leq \lambda \\ \frac{\|u|_g\|_2 - \lambda}{\|u|_g\|_2}u|_g & \text{otherwise}, \end{cases} \]

Outline

1. Background

2. Proximal Methods
 - Overview
 - Convergence
 - Computation of Proximal Operator

3. ProxFlow algorithm for group-sparsity

4. Discussion
The following two problems are dual:

\[P : \min_{v \in \mathbb{R}^p} \frac{1}{2} \| u - v \|_2^2 + \lambda \sum_{g \in G} \eta_g \| v|_g \| \]

\[D : \max_{\xi \in \mathbb{R}^{p \times |G|}} -\frac{1}{2} \| u - \sum_{g \in G} \xi^g \|_2^2 + \| u \|_2^2 \]

s.t. \quad \forall g \in G, \| \xi^g \|_* \leq \lambda \eta_g \text{ and } \xi^g_j = 0 \text{ if } j \notin g,

- \| \cdot \| \text{ and } \| \cdot \|_* \text{ are two convex norms dual to each other.}
- \(\xi = (\xi^g)_{g \in G} \) where \(\xi^g \in \mathbb{R}^p \) is the dual variable associated with \(v|_g \).
Block Coordinate Descent

BCD algorithm to solve the proximal problem in (14)

Initialization: $\xi = 0$.
repeat
\[\forall g \in \mathcal{G}, \quad \xi^g \leftarrow \text{Proj}_{\|\cdot\| \leq \lambda \eta_g} \left(\left[u - \sum_{h \neq g} \xi^h \right]_g \right). \]
until Convergence
\[v \leftarrow u - \sum_{g \in \mathcal{G}} \xi^g. \]

- Generally, the above algorithm is not guaranteed to converge in finite number of iterations.
- When $\|\cdot\|$ is ℓ_1– or ℓ_∞– norm and the groups in \mathcal{G} are in a hierarchical structure, only one iteration is needed to reach convergence.

Jenatton, R. and Mairal, J. and Obozinski, G. and Bach, F.
Proximal methods for hierarchical sparse coding
Journal of Machine Learning Research 12 (2011) 2297-2334
How to solve the group-sparsity problem efficiently in general cases?

- If ℓ_1/ℓ_∞-norm is used, the dual problem (15) becomes:

$$
\min_{\xi \in \mathbb{R}^{p \times |G|}} \frac{1}{2} \| u - \sum_{g \in G} \xi^g \|^2_2 \\
\text{s.t. } \forall g \in G, \| \xi^g \|_1 \leq \lambda \eta_g \text{ and } \xi^g_j = 0 \text{ if } j \notin g,
$$

The above problem can be formulated on a graph as a Quadratic Min-Cost Flow problem.

Mairal, J. and Jenatton, R. and Obozinski, G. and Bach, F. Convex and Network Flow Optimization for Structured Sparsity

Journal of Machine Learning Research 12 (2011) 2681-2720
(a) $\mathcal{G} = \{g = \{1, 2, 3\}\}$.

(b) $\mathcal{G} = \{g = \{1, 2\}, h = \{2, 3\}\}$.

(c) $\mathcal{G} = \{g = \{1, 2, 3\}, h = \{2, 3\}\}$.

(d) $\mathcal{G} = \{g = \{1\} \cup h, h = \{2, 3\}\}$.

\[\xi_1^g + \xi_2^g + \xi_3^g \leq \lambda \eta_g \]

\[\xi_1^g + \xi_2^g \leq \lambda \eta_g \]

\[\xi_2^g + \xi_3^g \leq \lambda \eta_h \]

\[\xi_1^g + \xi_2^g + \xi_3^g \leq \lambda \eta_g \]

\[\xi_2^g + \xi_3^g \leq \lambda \eta_h \]

\[\xi_1^h + \xi_2^h \leq \lambda \eta_g \]

\[\xi_2^h + \xi_3^h \leq \lambda \eta_h \]

\[\xi_1^h + \xi_2^h + \xi_3^h \leq \lambda \eta_g \]

\[\xi_2^h + \xi_3^h \leq \lambda \eta_h \]
Speed comparison

Figure: Comparison: Proximal + Network Flow (ProxFlow), Quadratic Programming (QP), Conic Programming (CP) and Sub-gradient Descent (SG)
1. Background

2. Proximal Methods
 - Overview
 - Convergence
 - Computation of Proximal Operator

3. ProxFlow algorithm for group-sparsity

4. Discussion
Toolbox

SPAMS – SPArse Modeling Software

- Developer: CVML Lab @ INRI.
 http://www.di.ens.fr/willow/SPAMS/
- Addressing various machine learning and signal processing problems:
 - Dictionary learning and matrix factorization (NMF, sparse PCA, ...).
 - Sparse decomposition problems with LARS, coordinate descent, OMP, SOMP, proximal methods.
 - Structured sparse decomposition problems.
Convex formulation of DECOLOR?

Replace the MRFs penalty in DECOLOR with a group sparsity-inducing norm:

$$\min_{L, S} \frac{1}{2} \| M - L - S \|_F^2 + \mu \| L \|_* + \lambda \Omega(S),$$

where \(\Omega(S) := \sum_{g \in G} \eta_g \| s|_g \|_\infty \).

Stable PCP with Group Sparsity by BCD

Initialize: \(S_0 = 0 \).

repeat

- compute \(L_{k+1} = D_\mu(M - S_k) \);
- compute \(S_{k+1} = \text{Prox}_{\lambda \Omega}(M - L_{k+1}) \);

until convergence

Output: \(L, S \).
Key References

Luca Baldassarre
Proximal Methods (*Lecture Notes*)
www.cs.ucl.ac.uk/staff/L.Baldassarre/lectures