Spectral Clustering
Group Learning Presentation

Xiaowei Zhou

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology

2011-05-6
Outline

1. Introduction
 - Overview
 - Graph Notations

2. Spectral Clustering
 - Graph Laplacian
 - Spectral Clustering

3. Interpretation
 - Graph cut point of view
 - Random walk point of view

4. Discussion
What is the problem?

Clustering:

- Left case: k-means works.
- Right case: k-means doesn’t work.
Definition: Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors.

Applications:

- Community Detection
- Image Segmentation
- Speech Separation
1 Introduction
 - Overview
 - Graph Notations

2 Spectral Clustering
 - Graph Laplacian
 - Spectral Clustering

3 Interpretation
 - Graph cut point of view
 - Random walk point of view

4 Discussion
Here we consider an undirected graph $G = (V, E)$, where $V = \{v_1, \cdots, v_n\}$ is the vertex set and $E = \{e_{ij}\}$ is the edge set.

The degree d_i of vertex i is the number of edges connected to i.

Two ways of measuring size of G are considered:

1. $|G| := \text{the number of vertices in } G$
2. $\text{vol}(G) := \sum_{i \in V} d_i$
Adjacency Matrix

For a graph with n vertices, the adjacency matrix is a $|V| \times |V|$ matrix defined as:

$$
A := \begin{cases}
A_{ij} = 1 & \text{if there is an edge } e_{ij} \\
A_{ij} = 0 & \text{if there is no edge} \\
A_{ii} = 0
\end{cases}
$$

$$
A = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
$$

(adjacency matrix example)
The incidence matrix of a graph is a $|E| \times |V|$ matrix defined as follows:

$$\nabla := \begin{cases}
\nabla_{ev} = -1 & \text{if } v \text{ is the initial vertex of edge } e \\
\nabla_{ev} = 1 & \text{if } v \text{ is the terminal vertex of edge } e \\
\nabla_{ev} = 0 & \text{if } v \text{ is not in } e
\end{cases}$$

$$\nabla = \begin{bmatrix}
-1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & +1
\end{bmatrix}$$

The incidence matrix is used as a gradient operator:

$$\nabla f(e_{ij}) = f_j - f_i$$
Laplace Matrix

The Laplacian matrix of a graph is a \(|V| \times |V|\) matrix:

1. \(L = D - A \), where \(D = \text{diag}(d_1, \cdots, d_n) \) is the degree matrix.
2. \(L = \nabla^T \nabla \)

\[
\begin{bmatrix}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & 0 & 1 \\
\end{bmatrix}
\]
To use the graph to model both neighborship and similarity between samples, we assign a weight w_{ij} to each edge e_{ij}.

A common similarity measure:

$$w_{ij} = e^{\frac{||v_i - v_j||^2}{\sigma}}$$

A, D, L are modified to weighted version:

- $A = W := [w_{ij}]_{|V| \times |V|}$ (if there is no edge between i, j)
- $D = diag(d_1, \cdots, d_n)$ where $d_{ij} = \sum_j w_{ij}$
- $L = D - A = \nabla^T W \nabla$
Construct Similarity Graphs

- *The ϵ-neighborhood graph*: connect all points whose pairwise distances are smaller than ϵ.
- *k-nearest neighbor graphs*: connect each vertex to its k nearest neighbors.
- *The fully connected graph*: connect all points with each other.
Outline

1. Introduction
 - Overview
 - Graph Notations

2. Spectral Clustering
 - Graph Laplacian
 - Spectral Clustering

3. Interpretation
 - Graph cut point of view
 - Random walk point of view

4. Discussion
The laplacian matrix of a graph has following properties:

1. For every vector \(f \in \mathbb{R}^n \):
 \[
 f^T L f = \frac{1}{2} \sum_{i,j} w_{ij} (f_i - f_j)^2
 \]

2. \(L \) is positive semi-definite.

3. The smallest eigenvalue of \(L \) is 0, the corresponding eigenvector is the constant one vector \(\mathbf{1} \).

4. \(L \) has \(n \) non-negative eigenvalues \(0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \).
Number of Connected Components

Suppose \(G = \bigcup_{i=1}^{k} A_i \), where \(A_1, \cdots, A_k \) are isolated connected subgraphs. Then, the multiplicity of the eigenvalue 0 of \(L \) equals the number of connected components \(k \). The eigenspace of eigenvalue 0 is spanned by the indicator vector \(1_{A_1}, \cdots, 1_{A_k} \).

Proof.

Two key points:

1. When \(k = 1 \), the multiplicity of the eigenvalue 0 is exactly 1.
2. When \(k > 1 \), \(L \) is a block diagonal matrix:

\[
L = \begin{bmatrix}
L_1 & & \\
& \ddots & \\
& & L_k
\end{bmatrix}
\]

The spectrum of \(L \) is given by the union of the spectra of \(L_i \).
A toy example

Histogram of the sample

Eigenvalues

Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
The Fiedler vector

- The second smallest eigenvalue λ_2 of L is called the Fiedler value of a graph. It measures the connectivity of a graph: the further from 0, the more connected.
- The eigenvector u_2 corresponding to λ_2 is called the Fiedler vector of a graph, which is important for graph Bi-partition.
- u_2 is the solution for the following minimization:

$$\min_f f^T L f$$

s.t. $f^T f = 1, f^T 1 = 0$
1. Introduction
 - Overview
 - Graph Notations

2. Spectral Clustering
 - Graph Laplacian
 - Spectral Clustering

3. Interpretation
 - Graph cut point of view
 - Random walk point of view

4. Discussion
Spectral Clustering Algorithm

The algorithm flow:

- **Input:** a data set \(x_1, \ldots, x_n \) where \(x_i \in \mathbb{R}^l \)
- 1. Construct a similarity graph.
- 2. \(L = D - A \)
- 3. Compute the first \(k \) eigenvectors \(u_1, \ldots, u_k \) of \(L \)
- 4. Let \(Y \in \mathbb{R}^{n \times k} \) be the matrix composed of \(u_1, \ldots, u_k \) as columns. Let \(y_i \) be the vector corresponding to the \(i \)-th row of \(Y \).
- 5. Cluster the points \(y_i \) with \(k \)-means algorithm into clusters \(C_1, \ldots, C_k \).

- **Output** the clusters \(A_1, \ldots, A_k \) with \(A_i = \{ j \mid y_j \in C_i \} \)
Spectral clustering: Dimension reduction using graph Laplacian followed by typical clustering.

- **Dimension Reduction**: Given a set x_1, \cdots, x_n of n points \mathbb{R}^l, find a set of points f_1, \cdots, f_n in \mathbb{R}^k ($k \ll l$) such that f_i best represents x_i.

- **Laplacian Eigenmaps (LE)**: Dimensional reduction using graph Laplacian.

Find $F' = \begin{bmatrix} f'_1 & \cdots & f'_n \end{bmatrix}$ by: $\min_F \sum_{i,j} W_{ij}\|f_i - f_j\|_2^2$, s.t. $F'F = I$

where W_{ij} is the weight of edges in the adjacency graph.

M. Belkin, P. Niyogi
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
Neural computation 2003
Can we unroll and present the data in a low-dimensional space?
The Laplacian Eigenmaps can map the points in a nonlinear manifold in \(\mathbb{R}^l \) to the points in \(\mathbb{R}^k \), and it preserves local information optimally in certain sense.

Construction of adjacency graph is critical.
Outline

1. Introduction
 - Overview
 - Graph Notations

2. Spectral Clustering
 - Graph Laplacian
 - Spectral Clustering

3. Interpretation
 - Graph cut point of view
 - Random walk point of view

4. Discussion
Graph Cut

- Cut:
 \[
 \text{cut}(A, \overline{A}) = \frac{1}{2} \sum_{i \in A, j \in \overline{A}} w_{ij}
 \]

- Min Cut:
 \[
 \text{MCut}(A_1, \cdots, A_k) = \sum_{i=1}^{k} \text{cut}(A_i, \overline{A_i})
 \]

- Ratio Cut
 \[
 \text{RCut}(A, \overline{A}) = \sum_{i=1}^{k} \frac{\text{cut}(A_i, \overline{A_i})}{|A_i|}
 \]

- Normalized Cut
 \[
 \text{NCut}(A, \overline{A}) = \sum_{i=1}^{k} \frac{\text{cut}(A_i, \overline{A_i})}{\text{vol}(A_i)}
 \]
Min Cut \((k = 2) \)

- Define a vector \(f = (f_1, \cdots, f_n)^T \in \mathbb{R}^n \) to indicate the belonging of vertices:

\[
f_i = \begin{cases}
1 & \text{if } v_i \in A \\
-1 & \text{if } v_i \in \overline{A}
\end{cases}
\]

- The Min Cut can be done by minimizing:

\[
\text{MCut}(A, \overline{A}) = \frac{1}{8} \sum_{i,j} w_{ij} (f_i - f_j)^2 = \frac{1}{4} f^T L f
\]

- Any eigenvector of \(L \) corresponding to eigenvalue 0 can minimize above energy. Usually trivial solutions are obtained.
Ratio Cut \((k = 2) \)

- The cost of Ratio Cut is:

\[
\text{RatioCut}(A, \overline{A}) = \frac{\text{cut}(A, \overline{A})}{|A|} + \frac{\text{cut}(A, \overline{A})}{|\overline{A}|} \tag{5}
\]

- Define the indicator vector as:

\[
f_i = \begin{cases}
\sqrt{|\overline{A}|/|A|} & \text{if } v_i \in A \\
-\sqrt{|A|/|\overline{A}|} & \text{if } v_i \in \overline{A}
\end{cases} \tag{6}
\]
Ratio Cut ($k = 2$)

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

$$= \frac{1}{2} \sum_{i \in A, j \in \overline{A}} w_{ij} \left(\sqrt{\frac{|A|}{|A|}} + \sqrt{\frac{|A|}{|A|}} \right)^2 + \frac{1}{2} \sum_{i \in \overline{A}, j \in A} w_{ij} \left(-\sqrt{\frac{|A|}{|A|}} - \sqrt{\frac{|A|}{|A|}} \right)^2$$

$$= \text{cut}(A, \overline{A}) \left(\frac{|A|}{|A|} + \frac{|A|}{|A|} + 2 \right)$$

$$= \text{cut}(A, \overline{A}) \left(\frac{|A| + |A|}{|A|} + \frac{|A| + |A|}{|A|} \right)$$

$$= |V| \cdot \text{RatioCut}(A, \overline{A}).$$
Relaxing f to be \mathbb{R}^n, in Ratio Cut, we are also minimizing $f^T L f$.

But now we have more constraints from Eq. 9:

$$\sum_{i=1}^{n} f_i = \sum_{i \in A} \sqrt{|A|/|A|} - \sum_{i \in \overline{A}} \sqrt{|A|/|A|} = |A| \sqrt{|A|/|A|} - |\overline{A}| \sqrt{|A|/|A|} = 0.$$

$$\|f\|^2 = \sum_{i=1}^{n} f_i^2 = |A| \left(\frac{|A|}{|A|} \right) + |\overline{A}| \left(\frac{|A|}{|A|} \right) = |\overline{A}| + |A| = n.$$

Thus, we can solve Ratio Cut by:

$$\min_{f} f^T L f \quad \text{s.t.} \quad f \perp 1, f^T f = n \quad (7)$$

The solution f^* is the Fiedler vector of L.

Xiaowei Zhou (HKUST) Spectral Clustering Group Learning 28 / 37
The cost of Normalized Cut is:

\[
\text{NCut}(A, \overline{A}) = \frac{\text{cut}(A, \overline{A})}{\text{vol}(A)} + \frac{\text{cut}(A, \overline{A})}{\text{vol}(\overline{A})}
\] (8)

Define the indicator vector as:

\[
f_i = \begin{cases}
\sqrt{\frac{\text{vol}(\overline{A})}{\text{vol}(A)}} & \text{if } v_i \in A \\
-\sqrt{\frac{\text{vol}(A)}{\text{vol}(\overline{A})}} & \text{if } v_i \in \overline{A}
\end{cases}
\] (9)
Similarly we can rewrite Normalized Cut as:

$$\min_{f} \quad f'Lf \quad \text{s.t.} \quad Df \perp 1, \quad f'Df = \text{vol}(V).$$ \hspace{1cm} (10)

Substitute $g = D^{\frac{1}{2}}f$, the problem terms to be:

$$\min_{g} \quad g'D^{-\frac{1}{2}}LD^{-\frac{1}{2}}g \quad \text{s.t.} \quad g \perp D^{\frac{1}{2}}1, \quad g'g = \text{vol}(V).$$ \hspace{1cm} (11)

The solution g^* is the Fiedler vector of $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$.

Substitute $f = D^{-\frac{1}{2}}g$ back, we can see f^* is the Fiedler vector of $D^{-1}L$.

General Case: $k \neq 2$

Given a partition of V into k sets A_1, \cdots, A_k, we define k indicator vectors f_1, \cdots, f_k where f_j is the indicator vector for A_j. The values of the indicator vectors are defined in the table. Then, the cut problems can be viewed as following minimization problems:

<table>
<thead>
<tr>
<th></th>
<th>indicator vectors</th>
<th>obj. function</th>
<th>constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mcut</td>
<td>$f_{ij} = \begin{cases} 1 & \text{if } v_i \in A_j \ 0 & \text{otherwise} \end{cases}$</td>
<td>$\text{Tr}(F'LF)$</td>
<td></td>
</tr>
<tr>
<td>Rcut</td>
<td>$f_{ij} = \begin{cases} 1/\sqrt{</td>
<td>A_j</td>
<td>} & \text{if } v_i \in A_j \ 0 & \text{otherwise} \end{cases}$</td>
</tr>
<tr>
<td>Ncut</td>
<td>$f_{ij} = \begin{cases} 1/\sqrt{\text{vol}(A_j)} & \text{if } v_i \in A_j \ 0 & \text{otherwise} \end{cases}$</td>
<td>$\text{Tr}(F'LF)$</td>
<td>$F'DF = I$</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
 - Overview
 - Graph Notations

2. Spectral Clustering
 - Graph Laplacian
 - Spectral Clustering

3. Interpretation
 - Graph cut point of view
 - Random walk point of view

4. Discussion
Consider a random walk on graph G. The transition probability of jumping in one step from vertex v_i to vertex v_j is proportional to the edge weight w_{ij} and is given by $p_{ij} := w_{ij}/d_i$. The transition matrix $P = (p_{ij})_{i,j=1,...,n}$ of the random walk turns out to be the normalized adjacency matrix:

$$P = D^{-1}W.$$

If the graph is connected and non-bipartite, then the random walk always possesses a unique stationary distribution $\pi = (\pi_1, \cdots, \pi_n)$, where $\pi_i = d_i/vol(V)$.
If $P(B|A)$ denotes the probability we start random walk from a vertex in subset A and transit to a vertex in subset B, then:

$$P(\overline{A}|A) + P(A|\overline{A}) = \text{Ncut}(A, \overline{A}).$$ \hspace{1cm} (12)

Proof:

$$P(B|A) = \frac{P(B, A)}{P(A)} = \frac{\sum_{i \in A, j \in B} \pi_i p_{ij}}{\sum_{i \in A} \pi_i}$$

$$= \frac{\sum_{i \in A, j \in B} \frac{d_i}{\text{vol}(V)} w_{ij} d_i}{\sum_{i \in A} \frac{d_i}{\text{vol}(V)}} = \frac{\sum_{i \in A, j \in B} w_{ij}}{\sum_{i \in A} d_i} = \frac{\sum_{i \in A, j \in B} w_{ij}}{\text{vol}(A)}$$

$$P(\overline{A}|A) + P(A|\overline{A}) = \frac{\sum_{i \in A, j \in \overline{A}} w_{ij}}{\text{vol}(A)} + \frac{\sum_{i \in A, j \in \overline{A}} w_{ij}}{\text{vol}(\overline{A})}.$$
Outline

1. Introduction
 - Overview
 - Graph Notations

2. Spectral Clustering
 - Graph Laplacian
 - Spectral Clustering

3. Interpretation
 - Graph cut point of view
 - Random walk point of view

4. Discussion
Why Use Spectral Clustering?

- Only the pairwise similarity is needed. Thus, it can handle complex data with missing values or hybrid data type.
- No assumption on the data distribution. Suitable for explore complex structures like manifold learning or community detection.
- Deterministic solution.
Following issues are critical for spectral clustering:

1. Parameters of constructing similarity graphs.
2. The number of clusters.
3. Computational efficiency.