View in PUBMED
View in Google Scholar

Peer-Reviewed Publications

  1. Multiscale Modeling of Protein Membrane Interactions for Nanoparticle Targeting in Drug Delivery, D. M. Eckmann, R. P. Bradley, S. Kutty Kandy, K. Patil, P. A. Janmey, R. Radhakrishnan, 2020, Current Opinion in Structural Biology, in press
  2. Dimerization and structure formation at curved fluid interfaces by capillarity, A. Reid, S. Kutty-Kandy, I. B. Liu, R. Radhakrishnan, K. J. Stebe, 2020, Soft Matter, in press.
  3. Structural insights into pseudokinase domains of receptor tyrosine kinases, J. B. Sheetz, S. Mathea, H. Karvonen, K. Malhotra, D. Chatterjee, W. Niininen, R. Perttilä, F. Preuss, K. Suresh, S. E. Stayrook, Y. Tsutsui, R. Radhakrishnan, D. Ungureanu, S. Knapp, and M. A. Lemmon, 2020, Molecular Cell, in press.
  4. A multiscale biophysical model for the recruitment of actin nucleating proteins at the membrane interface, O. Fatunmbi, R. P. Bradley, S. Kutty Kandy, R. Bucki, P. A. Janmey, R. Radhakrishnan, Soft Matter, 2020, in press DOI: 10.1039/D0SM00267D
  5. Divalent cations bind to phosphoinositides to induce ion and isomer specific propensities for nano-cluster initiation in bilayer membranes, R. P. Bradley, D. R. Slochower, P. A. Janmey, 2020, Royal Society Open Science, 7, 192208. DOI: 10.1098/rsos.192208
  6. ULK1 Phosphorylates Exo70 to Suppress Breast Cancer Metastasis, L. Maoa, Y.-Y. Zhan, B. Wu, Q. Yu, L. Xu, X. Hong, L. Zhong, P. Mi, L. Xiao, X. Wang, H. Cao, W. Zhang, B. Chen, J. Xiang, K. Mei, R. Radhakrishnan, W. Guo, T. Hu, 2020, Nature Communications, 11, 117. DOI: 10.1038/s41467-019-13923-7
  7. Nano Fluid Dynamics, R. Radhakrishnan, N. Ramakrishnan, D. M. Eckmann, P. S. Ayyaswamy, 2020, 21st Century Nanoscience: A Handbook, Exotic Nanostructures and Quantum Systems (Volume Five), Editor: Klaus Sattler, CRC Press (Taylor and Francis), New York, Chapter 11, 23 pages. ISBN 9780815356264.
  8. Nanoparticle transport phenomena in confined flows, R. Radhakrishnan, S. Farokhirad, D. M. Eckmann, P. S. Ayyaswamy, Advances in Heat Transfer, Eds: E.M. Sparrow, J. Abraham, and J. Gorman, 2019, 51, 55-129. Advances in Heat Transfer, Volume 51, Elsevier, NY, ISSN 0065-2717, DOI: 10.1016/bs.aiht.2019.08.002.
  9. Understanding and Controlling Food Protein Folding and Aggregation and taste: perspectives from experiment and simulation, F. Luís Barroso da Silva, P. Carloni, D. Cheung, G. Cottone, S. Donnini, E. Allen Foegeding, M. Gulzar, J. Christophe Jacquier, V. Lobaskin 7 , D. Mac Kernan, Z. Mohammad Hosseini Naveh, R. Radhakrishnan, E. Santiso, 2020, Annual Reviews of Food Science and Technology, 11, 365-387. DOI: 10.1146/annurev-food-032519-051640
  10. Emergent membrane morphologies in relaxed and tense membranes in presence of reversible adhesive pinning interactions, S. K. Kandy, R. Radhakrishnan, 2019, Physical Biology, 16, 066011 (pp1-10) DOI: 10.1088/1478-3975/ab48d5.
  11. Thermodynamic analysis of multivalent binding of functionalized nanoparticles to membrane surface reveals the importance of membrane entropy and nanoparticle entropy in adhesion of flexible nanoparticles, S. Farokhirad, R. P. Bradley, R. Radhakrishnan, 2019, Soft Matter, 15, 9271-9286. DOI: 10.1039/C9SM01653H
  12. Heterogeneous multi-scale framework for cancer systems models and clinical applications, A. Ghosh, R. Radhakrishnan, 2019, Proceedings of Mathematical Oncology Meeting, Portland, OR. DOI: 10.1101/633933.
  13. Extracellular matrix dimensionality reduces cellular cortical tension to stimulate pro-survival signaling in mammary epithelial cells, FuiBoon Kai, Guanqing Ou, Alexandra Long, Wei Guo, Richard Tourdot, Ravi Radhakrishnan, Christopher Chen, Sophie Dumont and Valerie M. Weaver, 2019, Cancer research, DOI: 10.1158/1538-7445.AM2019-1028.
  14. Time-dependent antagonist-agonist switching in receptor tyrosine kinase-mediated signaling, A. Ghosh, R. Radhakrishnan, 2019, BMC Bioinformatics, 20, 242; DOI: 10.1186/s12859-019-2816-3.
  15. Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow, S. Farokhirad, A. Ranganathan, J. Myerson, V. M. Muzykantov, D. M. Eckmann, P. S. Ayyaswamy, and R. Radhakrishnan, 2019, Nanoscale, 11, 6916-6928, DOI: 10.1039/c8nr09594a
  16. In silico profiling of activating mutations in cancer, E. Jordan, K. Patil, K. Suresh, J. Park, Y. Mosse, M. A. Lemmon, R. Radhakrishnan, 2019, Cellular and Molecular Life Sciences, 76(14):2663-2679; DOI: 10.1007/s00018-019-03097-2
  17. Nanofluid dynamics of flexible polymeric nanoparticles under wall confinement, N. S. Farokhirad, Ramakrishnan, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, 2019, J. Heat Transfer, in press. DOI: 10.1115/1.4043014
  18. Lateral distribution of phosphatidylinositol-4,5-bisphosphate in membranes regulates formin and ARP2/3-mediated actin nucleation, R. B., Y.-H. Wang, C. Yang, K. K. Sreeja, O. Fatunmbi, R. Bradley, K. Pogoda, T. Svitkina, R. Radhakrishnan, and P. A Janmey, 2019, J. Biological Chemistry, 294, 4704. DOI:10.1074/jbc.RA118.005552
  19. Rheology of colloidal suspensions in confined flow: Treatment of hydrodynamic interactions in particle-based simulations inspired by dynamical density functional theory, Z. Jabeen, H.-Yu Yu, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, 2018, Physical Review E, 98, 042602. DOI: 10.1103/PhysRevE.98.042602.
  20. Exosomal PD-L1 Contributes to Immunosuppression and is Associated with anti-PD-1 Response, G. Chen, A. C. Huang, W. Zhang, G. Zhang, M. Wu, W. Xu, Z. Yu, J. Yang, B. Wang, H. Sun, H. Xia, Q. Man, W. Zhong, L. F. Antelo, B. Wu, X. Xiong, X. Liu, L. Guan, T. Li, S. Liu, R. Yang, Y. Lu, L. Dong, S. McGettigan, R. Somasundaram, R. Radhakrishnan, G. Mills, Y. Lu, J. Kim, Y. H. Chen, H. Dong, Y. Zhao, G. C. Karakousis, T. C. Gangadhar, L. M. Schuchter, M. Herlyn, E. J. Wherry, X. Xu, Wei Guo, 2018, Nature, 560 (7718): 382-386. DOI: 10.1038/s41586-018-0392-8
  21. Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: an update on possible mechanisms. P. A. Janmey, R. Bucki, R. Radhakrishnan, Biophys. Biochem. Res. Communications, 2018, 25; 506(2): 307-314. DOI: 10.1016/j.bbrc.2018.07.155
  22. Heterogeneous multi-scale framework for cancer systems models and clinical applications, A. Ghosh, R. Radhakrishnan, 2018, Proceedings of the IEEE International Conference on Biomedical and Health Informatics
  23. Excess area dependent scaling behavior of nano-sized membrane tethers, N. Ramakrishnan, K. K. Sreeja, A. Roychoudhuri, D. M. Eckmann, P. S. Ayyaswamy, T. Baumgart, T. Pucadyil, S. Patil, V. M. Weaver, R. Radhakrishnan, 2018, Physical Biology, 15, 026002. DOI: 10.1088/1478-3975/aa9905.
  24. Multivalent binding of a ligand coated particle: Role of shape, size and ligand heterogeneity, M. McKenzie, S. M. Ha, A. Rammohan, R. Radhakrishnan, and N. Ramakrishnan, 2018, Biophysical Journal, 114(8):1830-1846. DOI: 10.1016/j.bpj.2018.03.007
  25. Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales, N. Ramakrishnan, R. P. Bradley, R. W. Tourdot, R. Radhakrishnan, 2018, J. Phys: Condensed Matter, 30 273001. DOI: 10.1088/1361-648X/aac702
  26. Microstructure of flow-driven suspension of hardspheres in cylindrical confinement: a dynamical density functional theory and Monte Carlo study, H.-Y. Yu*, Z. Jabeen*, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, Langmuir, 2017, 33 (42), 11332–11344. *These authors contributed equally. DOI: 10.1021/acs.langmuir.7b01860
  27. Lipid membrane shape evolution and the actin cytoskeleton, D. R. Slochower, Y.-H. Wang, R. Radhakrishnan, P. A. Janmey, 2018, Handbook of lipid membranes, molecular and materials aspects, Editors Cyrus Safinya and Joachim Rädler, Taylor & Francis Publishers, 2018; ISBN10 1466555726; ISBN13 9781466555723.
  28. Computational methods related to molecular structure and reaction chemistry of biomaterials, S. Farokhirad, R. P. Bradley, A. Sarkar, A. J. Shih, S. T. Telesco, Y. Liu, R. Venkatramani, D. M. Eckmann, P. S. Ayyaswamy, Radhakrishnan, Comprehensive Biomaterials II, eds. P. Ducheyne, K.E. Healy, D.W. Hutmacher, D.W. Grainger, C.J. Kirkpatrick, Elsevier London, 2017
  29. Motion of a nanospheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions, N. Ramakrishnan§, Y. Wang§, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, Journal of Fluid Mechanics, 2017, 121, 117-152; DOI: 10.1017/jfm.2017.182
  30. The spatial heterogeneity of acute lung injury selectively shunts different drug classes either towards or away from flooded alveoli, J. S. Brenner, K. Bhamidipati, N. Ramakrishnan, Z. Jabeen, D. Jiang, A. J. Paris, E. Hood, C. Villa, R. Kisleva, J. Myerson, D. Pan, V. Shuvaev, C. Greineder, G. S. Worthen, R. Radhakrishnan, V. Muzykantov, Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13(4), 1495–1506. DOI: 10.1016/j.nano.2016.12.019
  31. Curvature-Driven Migration of Colloids on Tense Lipid Bilayers, N. Li†, N. Sharifi-Mood†, F. Tu, D. Lee, R. Radhakrishnan, T. Baumgart*, and K. J. Stebe*, Langmuir, 2016, 33(2), 600-610. †Equal contribution; *co-corresponding author. DOI: 10.1021/acs.langmuir.6b03406
  32. Effect of wall-mediated hydrodynamics on the kinetics of activated processes for a Brownian particle predicted using composite generalized Langevin equations, H.-Y. Yu, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, Proceedings of the Royal Society A, 2016, 472, 20160397. DOI: 10.1098/rspa.2016.0397
  33. Computational models for nanoscale fluid dynamics inspired by non-equilibrium thermodynamics, R. Radhakrishnan, H.-Y. Yu, D. M. Eckmann, P. S. Ayyaswamy, Journal of Heat Transfer, 2017, 139, 033001:1-9. DOI: 10.1115/1.4035006
  34. Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall, H. Vitoshkin, H.-Y. Yu, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, Physical Review Fluids, 2016, 1, 054104. DOI: 10.1103/PhysRevFluids.1.054104
  35. Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes, R. P. Bradley, R. Radhakrishnan, Proceedings of the National Academy of Sciences Plus, 2016, 113, 35, E5117–E5124. DOI: 10.1073/pnas.1605259113
  36. Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors, N. Ramakrishnan, D. M. Eckmann, V. M. Muzykantov, P. S. Ayyaswamy, and R. Radhakrishnan, 2016, Royal Society Open Science, 2016, 3, 160260. DOI: 10.1098/rsos.160260; supplementary information DOI: doi:10.5061/dryad.4h76d
  37. Deletion mutations keep kinase inhibitors in the loop, D. M. Freed, J. H. Park, R. Radhakrishnan, M. A. Lemmon, Cancer Cell, 2016, 29(4):423-425. DOI: 10.1016/j.ccell.2016.03.017
  38. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes, N. Ramakrishnan, R. W. Tourdot, R. Radhakrishnan, 2016, International Journal of Advances in Engineering Sciences and Applied Mathematics, 8(2), 88-100 DOI: 10.1007/s12572-015-0159-5 (http://link.springer.com/article/10.1007/s12572-015-0159-5)
  39. Molecular and subcellular models in insilico oncology- computational horizons in cancer systems biology and multiscale cancer modelling, A. Ghosh, R. Radhakrishnan, Proceedings of the International Workshop on Pediatric Oncology, Toronto, Canada, 2016, accepted.
  40. Computational horizons in cancer (CHIC): developing meta- and hyper-multiscale models and repositories for in silico oncology – strategies, systems and results, G. Stamatakos, D. Dionysiou, R. Bohle, S. Gool, L. Solie, F. Dong, N. McFarlane, M. Viceconti, D. Tartarini, K. Marias, V. Sakkalis, N. Forgo, I. Lishchuk, R. Radhakrishnan, A. Ghosh, H. Byrne, J. Grogan, C. Guiot, I. Stura, P. Buechler, M. Reyes, E. Neri1, A. Bucur, B. de Bono, S. Alexander, G. Erbacci, D. Testi, M. Tsiknakis, E. Kolokotroni, E. Georgiadi, N. Tousert, Joost Dejaegher, S. De Vleeschouwer, D. Walker, S. Sfakianakis, I. Karatzanis, S. Bnà and N. Graf , Proceedings of the International Workshop on Pediatric Oncology, Toronto, Canada, 2016, accepted.
  41. Multiscale numerical modeling of the motion of a spherical nanoparticle in a blood vessel: Implications for targeted drug delivery, H. Vitoshkin, H. –Y. Yu, D. M. Eckmann, R. Radhakrishnan, P. S. Ayyaswamy, 6th International Symposium on Advances in Computational Heat Transfer, 2015.</li
  42. Phenomenology based multiscale models as tools to understand morphological transitions in cell membranes, N. Ramakrishnan, R. Radhakrishnan, Advances in Planar Lipid Bilayers and Liposomes, Elsevier, 2015, ISSN 1554-4516, Vol 22, pp 129-175. DOI: 10.1016/bs.adplan.2015.06.004
  43. Application of a free energy landscape approach to study tension dependent bilayer tubulation mediated by curvature inducing proteins, R. W. Tourdot, N. Ramakrishnan, T. Baumgart, R. Radhakrishnan, 2015, Physical Review E, 92, 042715. DOI: http://dx.doi.org/10.1103/PhysRevE.92.042715.
  44. Erratum: Application of a free-energy-landscape approach to study tension-dependent bilayer tubulation mediated by curvature-inducing proteins [Phys. Rev. E 92, 042715 (2015)], R. W. Tourdot, N. Ramakrishnan, T. Baumgart, R. Radhakrishnan, Physical Review E, 2016, 93, 059902. DOI: 10.1103/PhysRevE.93.059902
  45. Hydrodynamic interactions of deformable nanocarriers and effect of crosslinking, A. Sarkar, D. M. Eckmann, P. S. Ayyaswamy and R. Radhakrishnan, Soft Matter (RSC Journal), 2015, DOI: 10.1039/C5SM00669D
  46. Composite Generalized Langevin Equation for Brownian Motion in Different Hydrodynamic and Adhesion Regimes, H. –Y. Yu, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, Phys. Rev. E, 2015, 91, 052303. DOI: 10.1103/PhysRevE.91.052303.
  47. Physical chemistry and membrane properties of two phosphatidylinositol bisphosphate isomers, D. R. Slochower, R. Radhakrishnan, P. A. Janmey, Physical Chemistry Chemical Physics (A Royal Society of Chemistry Journal), 2015, 17, 12608-12615. DOI: 10.1039/c5cp00862j
  48. Integrative functional assessment of ALK mutations for therapeutic stratification in neuroblastoma, D. Weiser, S. Bressler, P. J. Huwe, R. Radhakrishnan, M. A. Lemmon, Y. Mosse, Cancer Cell, 2014, 26, 682-694. DOI: 10.1016/j.ccell.2014.09.019.
  49. K. S. Gajula, P. J. Huwe, C. Y. Mo, D. J. Crawford, J. T. Stivers, R. Radhakrishnan, R. M. Kohli, High-throughput mutagenesis reveals functional determinants for DNA targeting by Activation-Induced Cytidine Deaminase, Nucleic Acids Research, 2014, 42(15), 9964-9973. DOI: 10.1093/nar/gku689
  50. R. W. Tourdot, R. P. Bradley, N. Ramakrishnan, R. Radhakrishnan, Multiscale Computational Models in Physical Systems Biology of Intracellular Trafficking, IET Systems Biology, 2014, 8(5), 198-213, DOI:http://dx.doi.org/10.1049/iet-syb.2013.0057
  51. R. W. Tourdot, N. Ramakrishnan, R. Radhakrishnan, Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers, Phys. Rev. E, 2014, 90, 022717, DOI: http://dx.doi.org/10.1103/PhysRevE.90.022717
  52. Publisher's Note: Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers [Phys. Rev. E 90, 022717 (2014)], R. W. Tourdot, N. Ramakrishnan, and R. Radhakrishnan, 2016, Phys. Rev. E, 93, 049909; DOI: 10.1103/PhysRevE.93.049909
  53. N. Ramakrishnan, P. B. Sunil Kumar, R. Radhakrishnan, Mesoscale computational methods for membrane remodeling by curvature inducing proteins, Physics Reports, 2014, 543, 1-60, DOI: 10.1016/j.physrep.2014.05.001
  54. J. Liu, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, Modeling of Binding Free Energy of Targeted Nanocarriers to Cell Surfaces, Heat and Mass Transfer (Springer), 2014, 50(3), 315-321. DOI: 10.1007/s00231-013-1274-0
  55. Counterion-mediated pattern formation in membranes containing anionic lipids, D. R. Slochower, Y.-H. Wang, R. W. Tourdot, R. Radhakrishnan, and P. A. Janmey, Advances in Colloid and Interface Science, 2014, 208, 177-188. DOI: 10.1016/j.cis.2014.01.016
  56. Computational Delineation of Tyrosyl-Substrate Recognition and Catalytic Landscapes in the Epidermal Growth Factor Receptor Tyrosine Kinase Domain, Y. Liu, R. Radhakrishnan, Molecular Biosystems, 2014, 10, 1890-1904. DOI: 10.1039/C3MB70620F
  57. S. E. Telesco, R. Vadigepalli, R. Radhakrishnan, Molecular Modeling of the ErbB4/HER4 Kinase in the Context of the HER4 Signaling Network Helps Rationalize the Effects of Clinically Identified HER4 Somatic Mutations on the Cell Phenotype, Biotechnology Journal, 2013, 8, 1452-1464. (Selected as a “In this Issue” article). DOI: 10.1002/biot.201300022
  58. D. R. Slochower, P. J. Huwe, R. Radhakrishnan, and P. A. Janmey, Quantum and all-atom molecular dynamics simulations of protonation and divalent ion binding to phosphatidylinositol 4,5-bisphosphate (PIP2), J. Phys. Chem B., 2013, 117 (28), 8322–8329. (DOI)
  59. Y. Zhao, J. Liu, C. Yang, B. R. Capraro, T. Baumgart, R. P. Bradley, N. Ramakrishnan, R. Radhakrishnan, T. Svitkina, and W. Guo, Generation of Membrane Curvature by Exo70, Dev. Cell., 2013, 26, 266-278. [DOI]
  60. G. S. Stamatakos, N. Graf, R. Radhakrishnan, Multiscale Cancer Modeling and In Silico Oncology: Emerging Computational Frontiers in Basic and Translational Cancer Research, J. Bioengineering and Biomed. Sci., 2013, 3(2), 1000e114. (DOI) (open access) PDF (Open Access)
  61. R. P. Bradley, R. Radhakrishnan, Models for protein-cell membrane interaction, Special Issue on Multiscale Simulations in Soft Matter, Polymers (ISSN 2073-4360), 2013, 5, 890-936. [DOI]
  62. B. J. Zern, A-M. Chacko, J. Liu, C. F. Greineder, E. R. Blankemeyer, R. Radhakrishnan, V. R. Muzykantov, Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation, ACS Nano, 2013, 7(3):2461-2469. (Pubmed ID: 23383962).
  63. P. S. Ayyaswamy, V. Muzykantov, D. M. Eckmann, R. Radhakrishnan, Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation, J. Nanotechnology for Engineering and Medicine, 2013, 4, 010101. [DOI: 10.1115/1.4024004]
  64. Y. Liu, N. J. Agrawal, R. Radhakrishnan, A molecular docking study of the binding of ruthenium complex compounds to PIM1, GSK3, and CDK2 protein kinases, J. Molecular Modeling, 2013, 19, 371-382. (DOI).
  65. P. J. Huwe, and R. Radhakrishnan, Computational Methodology for Mechanistic Profiling of Kinase Domain Mutations in Cancers, Proceedings of the IEEE, 5th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation, 2013, pp:1-4. Open access version of the article is also available through ICCS and through VPH Institute.
  66. R. Radhakrishnan, B. Uma, J. Liu, P. S. Ayyaswamy, D. M. Eckmann, Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery , J. Computational Physics, 2012, 244, 252-263. (DOI).
  67. J. H. Park1, Y. Liu1, M. A. Lemmon*, R. Radhakrishnan*, Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain, Biochem J., 2012, 448(3), 417-423; 1. Equal contribution, * co-corresponding authors. (Pubmed ID: 23101586) (DOI).
  68. R. P. Bradley, R. Radhakrishnan, modeling of membrane curvature driven by epsin, Bioengineering Conference (NEBEC), IEEE Proceedings of the Bioengineering Conference (NEBEC), 38th Annual Northeast Meeting, 2012, 317-318. ISSN: 2160-7001, Print ISBN: 978-1-4673-1141-0. 10.1109/NEBC.2012.6207092. (Available at IEEE Explore)
  69. R. Tourdot, J. Liu, R. Radhakrishnan, Mesoscale simulations of curvature inducing protein partitioning in the presence of mean curvature gradients, IEEE Proceedings of the Bioengineering Conference (NEBEC), 38th Annual Northeast Meeting, 2012, 366-367. ISSN: 2160-7001, Print ISBN: 978-1-4673-1141-0. DOI: 10.1109/NEBC.2012.6207116. (Available at IEEE Explore)
  70. B. Uma, R. Radhakrishnan, D. M. Eckmann, P. S. Ayyaswamy, Nanocarrier-cell surface adhesive and hydrodynamic interactions: ligand-receptor bond sensitivity study, ASME Journal of Nanotechnology for Medicine and Engineering, 2012, 3, 031009.
  71. B. Uma, P.S. Ayyaswamy, R. Radhakrishnan, D.M. Eckmann, Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid, Int. J. Micro-Nano Scale Transport, 2012, 3(1+2), 13-20.
  72. B. Uma, D. M. Eckmann, R. Radhakrishnan, P. S. Ayyaswamy, Hybrid scheme combining fluctuating hydrodynamics and generalized Langevin dynamics for nearly neutrally buoyant particle in stationary medium, ASME Journal of Heat Transfer, 2013, 135, 011011.
  73. R. Radhakrishnan, Roles for Thermodynamics and Catalysis in Systems Biology: Case and Point, Editorial in Journal of Thermodynamics and Catalysis, OMICS Publishing Group, 2012, 3:e102. doi:10.4172/2157- 7544.1000e102. (Open Access).
  74. B.Uma, R.Radhakrishnan, D.M.Eckmann and P.S.Ayyaswamy, Fluctuating hydrodynamics approach for the simulation of nanoparticle Brownian motion in a Newtonian fluid, Proceedings of the 21st National and 10th ISHMT-ASME Heat and Mass Transfer conference, 2012.
  75. J. Liu, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan,Modeling of Binding Free Energy of Targeted Nanocarriers to Cell Surfaces, The Seventh Interdisciplinary Transport Phenomena Conference, Proceedings of ITP2011, Interdisciplinary Transport Phenomena VII: Fluid, Thermal, Biological, Materials and Space Sciences, 2011, Dresden, Germany, pp6-6 to 6-11.
  76. B.Uma, R.Radhakrishnan, D.M.Eckmann and P.S.Ayyaswamy, Modeling of a nanoparticle motion in a Newtonian fluid: A comparison between fluctuating hydrodynamics and generalized Langevin methods, Proceedings of the ASME 3rd Micro/Nanoscale Heat and Mass Transfer International Conference, Paper No. MNHMT2012-75019, 2012.
  77. J. Liu, N. J. Agrawal, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, Top-down Mesoscale Models and Free Energy Calculations of Multivalent Protein-Protein and Protein-Membrane Interactions in Nanocarrier Adhesion and Receptor Trafficking, Innovations in Biomolecular Modeling, Royal Society of Chemistry Publishing, 2012, chapter 11, pp272-287. ISBN-10: 1849734100; ISBN-13: 978-1849734103
  78. S. E. Telesco, R. Radhakrishnan, Structural Systems Biology and Multiscale Signaling Models, Annals of Biomedical Engineering, 2012, 40(11), 2295-2306. (Pubmed ID: 22539148).
  79. S. E. Telesco, A. Shih, Y. Liu, R. Radhakrishnan, Investigating Molecular Mechanisms of Specificity in Regulation of the HER2 Receptor Tyrosine Kinase through Molecular Modeling and Simulation, International Journal of Cancer Research and Prevention (2011), ISSN: 1554-1134, Volume 4, Number 3, 2012, pp219-252. (open access)
  80. B. Uma, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium, Molecular Physics, 2012, 110(11–12), 1057–1067. (DOI: 10.1080/00268976.2012.663510)
  81. J. Liu, R. Tourdot, V. Ramanan, N. J. Agrawal, R. Radhakrishnan, Mesoscale Modeling and Simulations of Spatial Partitioning of Curvature Inducing Proteins under the Influence of Mean Curvature Fields in Bilayer Membranes, Molecular Physics, 2012, 110(11–12), 1127–1137. (DOI:10.1080/00268976.2012.664661)
  82. B. Uma, T. N. Swaminathan, P. S. Ayyaswamy, D. M. Eckmann, R. Radhakrishnan, Generalized Langevin dynamics of a nanoparticle using a finite element approach: Thermostating with correlated noise, J. Chem. Phys., 2011, 135, 114104. DOI: 10.1063/1.3635776; Erratum, 136, 019901, 2012.
  83. B. Uma, T. N. Swaminathan, R. Radhakrishnan, D. M. Eckmann, and P. S. Ayyaswamy, Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields, Phys. Fluids, 2011, 23, 073602. doi:10.1063/1.3611026
  84. V. Ramanan, N. J. Agrawal, J. Liu, S. Engles, R. Toy, R. Radhakrishnan, Systems Biology and Physical Biology of Clathrin-Mediated Endocytosis: An Integrative Experimental and Theoretical Perspective, Integrative Biology (RSC Journal), 2011, 3(8), 803-815. DOI: 10.1039/c1ib00036e; (Pubmed ID: 21792431).
  85. J. Liu, N. J. Agrawal, A. Calderon, P. S. Ayyaswamy, D. M. Eckmann, R. Radhakrishnan, Multivalent binding of nanocarrier to endothelial cells under shear flow, Biophysical J., 2011, 101(2):319-326. (Pubmed ID: 21767483).
  86. J. Liu, R. P. Bradley, D. M. Eckmann, P. S. Ayyaswamy, R. Radhakrishnan, Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery, Current Nanoscience, 2011, 7(5): 727-735. (Pubmed ID: 22116782)
  87. V. Muzykantov, R. Radhakrishnan, D. M. Eckmann, Dynamic factors controlling targeting nanocarriers to vascular endothelium, Current Drug Metabolism, 2012, 113, 70. (Pubmed ID: 22292809)
  88. S. E. Telesco, A. J. Shih, F. Jia, R. Radhakrishnan, A Multiscale Modeling Approach to Investigate Molecular Mechanisms of Pseudokinase Activation and Drug Resistance in the HER3/ErbB3 Receptor Tyrosine Kinase Signaling Network, Molecular Biosystems, 2011, 7(6), 2066-2080. DOI: 10.1039/c0mb00345j. (Pubmed: 21509365)
  89. T. N. Swaminathan, B. Uma, J. Liu, R. Radhakrishnan, P. S. Ayyaswamy, D. M. Eckmann, Dynamic factors controlling carrier anchoring on vascular cells, IUBMB Life, 2011, 63(8):640-647. (Pubmed: 21721099)
  90. A. J. Shih, S. E. Telesco, R. Radhakrishnan, Analysis of Somatic Mutations in Cancer: Molecular Mechanisms of Activation in the ErbB family of Receptor Tyrosine Kinases, Cancers, 2011, 3(1), 1195-1231; doi:10.3390/cancers3011195 (open access). (Pubmed: 21701703)
  91. S. E. Telesco, A. Shih, Y. Liu, R. Radhakrishnan, Investigating Molecular Mechanisms of Activation and Mutation of the HER2 Receptor Tyrosine Kinase through Computational Modeling and Simulation, 2011, Cancer Research Journal, 4(4), 1-35.
  92. A. J. Shih, S. E. Telesco, S. H. Choi, M. A. Lemmon, R. Radhakrishnan, Molecular Dynamics Analysis of Conserved Hydrophobic and Hydrophilic Bond Interaction Networks in ErbB Family Kinases, 2011, Biochemical Journal, 436, 241-251. (Pubmed: 21426301)
  93. J. Liu, G. E. R. Weller, B. Zern, P. S. Ayyaswamy, D. M. Eckmann, V. Muzykantov, R. Radhakrishnan, A Computational Model for Nanocarrier Binding to Endothelium Validated Using In Vivo, In Vitro, and Atomic Force Microscopy Experiments, 2010, Proceedings of the National Academy of Sciences, 107(38), 16530-16535. (Pubmed: 20823256) SUPPLEMENTARY
  94. N.J. Agrawal, J. Nukpezah, R. Radhakrishnan, Minimal Mesoscale Model for Protein-Mediated Vesiculation in Clathrin-Dependent Endocytosis, 2010, Plos: Computational Biology, , 6(9) e1000926, 2010. doi:10.1371/journal.pcbi.1000926. (Pubmed: 20838575) SUPPLEMENTARY
  95. F. Shi, S. E. Telesco, Y. Liu, R. Radhakrishnan*, M. A. Lemmon*, The ErbB3/HER3 Intracellular Domain is Competent to Bind ATP and Catalyze Autophosphorylation, 2010, Proceedings of the National Academy of Sciences, 107, 7692-7697. *Co-corresponding authors. (Pubmed: 20351256) SUPPLEMENTARY
  96. S. E. Telesco, A. Shih, Y. Liu, R. Radhakrishnan, Investigating Molecular Mechanisms of Specificity in Regulation of the HER2 Receptor Tyrosine Kinase through Molecular Modeling and Simulation, HER2 and Cancer: Mechanism, Testing and Targeted Therapy, Nova Science Publishers, New York, 2011, 47-80.
  97. A. J. Shih*, S. E. Telesco*, Y. Liu, R. Venkatramani, R. Radhakrishnan, Computational methods related to reaction chemistry, Comprehensive Biomaterials, eds. P. Ducheyne, Elsevier London, 2011, vol 3, 155-169. *These authors contributed equally.
  98. R. Venkatramani, R. Radhakrishnan, Computational Delineation of the Catalytic Step of a High Fidelity DNA Polymerase, 2010, Protein Science (A Protein Society Journal), 19(4), 815-825. PDF. SUPPLEMENTARY. (Pubmed: 20162624)
  99. J. Purvis, A. J. Shih, Y. Liu, R. Radhakrishnan, Book Chapter: Cancer cell- linking oncogenic signaling to molecular structure, Book title: Multiscale Cancer Modeling, Editors: T. S. Deisboeck, G. Stamatakos, Chapman & Hall-CRC Mathematical and Computational Biology Series, 2011, pp31-43.
  100. N.J. Agrawal, R. Radhakrishnan, Calculation of Free energies Calculation of free energies in fluid membranes subject to heterogeneous curvature fields, 2009, Phys Rev E, 80, 011925. PDF. SUPPLEMENTARY.(Pubmed: 19658747)
  101. J. E. Purvis, R. Radhakrishnan, S. L. Diamond, Assembling large-scale kinetic models of cellular dynamics from modular steady-state networks, 2009, PLoS: Computational Biology, 5(3) e1000298. PDF. (Pubmed: 19266013)
  102. S. E. Telesco, R. Radhakrishnan, Insights into regulatory mechanisms of the HER2 tyrosine kinase domain through molecular dynamics simulations, 2008, Biophysical J., 96(6), 2321-2334. PDF. SUPPLEMENTARY.(Pubmed ID: 19289058)
  103. A. Suenaga, M. Hatakeyama, A. B. Kiyatkin, R. Radhakrishnan, M. Taiji, and B. N. Kholodenko, Tyr-317 phosphorylation reduces Shc binding affinity for phosphotyrosyl residues of epidermal growth factor receptor, 2009, Biophysical J., 96(6), 2278-2288. PDF. (Pubmed ID: 19289054).
  104. N.J. Agrawal, J. Weinstein, R. Radhakrishnan, Landscape of Finite-Temperature Equilibrium Behavior of Curvature Inducing Proteins on a Bilayer Membrane Explored using a Linearized Elastic Free Energy Model, 2008, Molecular Physics, 106, 1913-1923. PDF. (Pubmed Central: PMC3020790)
  105. Andrew Shih, Jeremy Purvis, R. Radhakrishnan, Molecular Systems Biology of ErbB1 Signaling: Bridging the Gap through Multiscale Modeling and High-Performance Computing, 2008, Mol. Biosystems. (A Royal Society of Chemistry Journal), 4, 1151-1159. Highlight article. PDF. (Pubmed ID: 19396377).
  106. J. Purvis, V. Ilango, R. Radhakrishnan, Role of Network Branching in Eliciting Differential Short-Term Signaling Responses in the Hyper-Sensitive Epidermal Growth Factor Receptor Mutants Implicated in Lung Cancer, 2008, Biotechnology progress, 24, 540-553. PDF. (Pubmed ID: 18412405)
  107. R.Venkatramani and R. Radhakrishnan, A computational study of the force dependence of phosphoryl transfer during DNA synthesis by a high fidelity polymerase, 2008, Physical Review Letters., 100, 088102. PDF. SUPPLEMENTARY.(Pubmed ID: 18352668)
  108. N.J. Agrawal, R. Radhakrishnan, P. Purohit, Coarse-grained model for DNA curvature and flexibility in the presence of DNA-binding proteins, 2007, Biophysical J, 94:3150 (Pubmed ID: 18192346).
  109. Invited Article: N.J. Agrawal and R. Radhakrishnan, Role of glycocalyx in mediating nanocarrier cell adhesion explored using a thermodynamic model and Monte Carlo Simulation, 2007, J. Phys. Chem. C 2007, 111, 15848 - 15856. (Pubmed ID: 19081797).
  110. R.Venkatramani and R. Radhakrishnan, The effect of oxidatively damaged DNA on the active site pre-organization during nucleotide incorporation in a high fidelity polymerase from Bacillus stearothermophilus, 2007, Proteins: structure, function, bioinformatics, 71, 1360-1372. PDF (Pubmed ID: 18058909).
  111. B. J. Anderson, R. Radhakrishnan, B. Peters, G. P. Borghi, J. W. Tester, and B. L. Trout, 2007, Molecular simulations of ice and gas hydrate nucleation, Physics and Chemistry of Ice, Molecular simulations of ice and gas hydrate nucleation, Physics and Chemistry of Ice, Royal Society of Chemistry, Eds. Werner Kuhs, Cambridge, England, 3-13. ISBN (print): 978-0-85404-350-7, DOI: 10.1039/9781847557773.
  112. J. Purvis, Y. Liu, V. Ilango, and R. Radhakrishnan, Efficacy of tyrosine kinase inhibitors in the mutants of the epidermal growth factor receptor through a multiscale molecular/ systems model for phosphorylation and inhibition, 2007, Proceedings of Foundations in Systems Biology and Engineering II, Ed. F. Algower, M. Reuss, Fraunhofer IRB Verlag Stuttgart, pp 289-294. ISBN 978-3-8167-7436-5. PDF
  113. R. Radhakrishnan, Coupling of Fast and Slow Modes in the Reaction Pathway of the Minimal Hammerhead Ribozyme Cleavage, 2007, Biophys J., 93, 2191-2399. PDF (Pubmed ID: 17545240).
  114. Y. Liu§, J. Purvis§, A. Shih, J. Weinstein, N. Agrawal, R. Radhakrishnan, A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, preferential signaling, and relevance to oncogenic transformations, 2007, Annals of Biomedical Engineering, 35, 1012-1025; § these authors contributed equally. PDF (Pubmed ID: 17273938).
  115. J. Weinstein, R. Radhakrishnan, KMC-TDGL, a coarse-grained methodology for simulating interfacial dynamics in complex fluids: application to protein-mediated membrane processes, 2006, Mol. Phys., 104, 3653–3666, 2006. PDF
  116. R. Radhakrishnan, K. Arora, Y. Wang, W. A. Beard, S. H. Wilson, T. Schlick, Regulation of DNA repair fidelity by molecular checkpoints: gates in DNA polymerase beta's substrate selection, 2006, Biochemistry, 45, 15142-15156. (Pubmed ID: 17176036)
  117. R. Radhakrishnan*, T. Schlick, 2006, Correct and incorrect nucleotide incorporation pathways in DNA polymerase beta, Biochem. and Biophys. Res. Communications, 350, 521-529; *corresponding author (Pubmed ID: 17022941).
  118. Review Article: C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. E. Gubbins, R. Radhakrishnan and M. Sliwinska-Bartkowiak, 2006, Effect of confinement on freezing and melting, J. Phys.: Cond. Matter, 18, R15-R68. PDF
  119. F. R. Hung, K. E. Gubbins, R. Radhakrishnan, K. Szostak, F. Beguin, G. Dudziak, M. Sliwinska-Bartkowiak, 2005, Melting-Freezing of Lennard Jones in Carbon Nanotubes, Applied Physics Letters, 86, 103110.
  120. C. Lo, R. Radhakrishnan, B. L. Trout, 2005, Application of Transition Path Sampling Methods in Catalysis: A New Mechanism for C-C Bond Formation in the Methanol Coupling Reaction in Chabazite, Catal. Today, 105, 93. PDF
  121. R. Radhakrishnan and T. Schlick, 2005, Fidelity Discrimination in DNA polymerase b: differing closing profiles for a mismatched (G:A) versus matched (G:C) base pair, J. Am. Chem. Soc., 127, 13245-13252. (Pubmed ID: 16173754).
  122. Invited Contribution: R. Radhakrishnan, B. L. Trout, 2005, Order parameters in molecular simulations, Handbook of Materials Modeling, Ed. S. Yip, Chapter 6, Kluwer Academic Publishers, Dordrecht, pp 1613-1626. PDF
  123. M. Sliwinska-Bartkowiak, G. Dudziak, M. Kempinski, W. Kempinski, R. Radhakrishnan, F. Hung, K. E. Gubbins, 2004, Melting and freezing in narrow pores: Dielectric and EPR studies, Non-linear Dielectric Phenomena in Complex liquids, Eds. S. J. Rozoska, V. P. Zhelezny, Kluwer Academic, Netherlands, pp 357-366.
  124. R. Radhakrishnan and T. Schlick, 2004, Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase beta’s closing, Proc. Nat. Acad. Sci., 101, 5970. PDF; supplementary information PDF (Pubmed ID: 15069184).
  125. R. Radhakrishnan and T. Schlick, 2004, Biomolecular Free Energy Profiles by a Shooting/Umbrella Sampling Protocol (BOLAS), J. Chem. Phys., 121, 2436. PDF. (Pubmed ID: 15260799).
  126. C. Lo, C. A. Giurumescu, R. Radhakrishnan, B. L. Trout, 2004, Methanol coupling in the zeolite chabazite studied via first-principles molecular dynamics, Mol. Phys., 102, 281. PDF
  127. R. Radhakrishnan, A. Demurov, H. Herzog, B. L. Trout, 2003, A consistent and verifiable model for the dissolution of CO2 in water under hydrate forming conditions, Energy Conversion Management, 44, 771. PDF
  128. R. Radhakrishnan, B. L. Trout, 2003, Nucleation of hexagonal ice Ih in liquid water, J. Am. Chem. Soc., 125, 7743. (Pubmed ID: 12812516).
  129. R. Radhakrishnan, B. L. Trout, 2003, Nucleation of crystalline phases of water underhomogeneous and inhomogeneous environments, Phys. Rev. Lett., 90, 158301. PDF. (Pubmed ID: 12732077).
  130. Freezing/Melting in Porous Carbons, F. R. Hung, K. E. Gubbins, R. Radhakrishnan, F. Beguin and M. Sliwinska-Bartkowiak, Proceedings of the 3rd Pacific Basin Conference on Adsorption Science and Technology, ed. C-H. Lee, World Scientific, Singapore, pp. 9-16, 2003.
  131. R. Radhakrishnan and K. E. Gubbins, Freezing in porous materials, M. Sliwinska-Bartkowiak, 6 pages, Proceedings of COPS-VI Studies in surface science and catalysis, Elsevier, Amsterdam, 2003.
  132. R. Radhakrishnan, B. L. Trout, Mechanism for nucleation of CO2 hydrate clathrates studied using a Monte Carlo based approach, Fourth international conference on gas hydrates, Yokohama, Japan, pp494, 2002.
  133. R. Radhakrishnan, A. Demurov, H. J. Herzog, B. L. Trout, Modeling the dissolution of liquid CO2 in water under hydrate forming conditions, Fourth international conference on gas hydrates, Yokohama, Japan, pp262, 2002.
  134. R. Radhakrishnan, M. Sliwinska-Bartkowiak, and K. E. Gubbins, 2002, Global Phase Diagrams for Freezing in Porous Media”, J. Chem. Phys., 116 (3), 1147. PDF
  135. R. Radhakrishnan, M. Sliwinska-Bartkowiak, and K. E. Gubbins, 2002, “Existence of a hexatic phase in porous media”, Phys. Rev. Lett., 89 (7), 076101. (Pubmed ID: 12190533).
  136. A. Demurov, R. Radhakrishnan, and B. L. Trout, 2002, “Computations of Diffusivities in ice and CO2 clathrate via molecular dynamics and Monte Carlo simulations”, J. Chem. Phys., 116 (2) 702. PDF
  137. R. Radhakrishnan, B. L. Trout, 2002, “A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates”, J. Chem. Phys., 117 (4), 1786. PDF
  138. M. Sliwinska-Bartkowiak, R. Radhakrishnan, and K.E. Gubbins, 2001, “Effect of confinement on melting in slit-shaped Pores: experimental and simulation study of aniline in activated carbon fibers”, Mol. Sim., 27, 323.
  139. M. Sliwinska-Bartkowiak, G. Dudziak, R. Sikorski, R. Gras, K. E. Gubbins, R. Radhakrishnan, K. Kaneko, 2001, “Freezing behavior in porous materials: theory and experiments”, Polish J. Chem., 75 (4), 547.
  140. M. Sliwinska-Bartkowiak, G. Dudziak, R. Gras, R. Sikorski, R. Radhakrishnan and K. E. Gubbins, 2001, “Melting/freezing behavior of a fluid confined in pores”, Colloids and Surfaces A, 187-188, 523. PDF
  141. M. Sliwinska-Bartkowiak, J. Gras, R. Sikorski, G. Dudziak, R. Radhakrishnan and K. E. Gubbins, “Experimental and simulation studies of phase transitions in porous silica glasses”, June 1999, COPS-V, Heidelberg, Germany (proceedings in Studies in Surface Science and Catalysis, Elsevier, 2000).PDF
  142. Understanding Freezing Behavior in Porous Materials, R. Radhakrishnan, M. Sliwinska-Bartkowiak, K.E. Gubbins, K. Kaneko, Eds. K. Kaneko, H. Kanoh, and Y. Hanzawa, Fundamentals of Adsorption 7, International Adsorption Society (IK international pub), 341, 2002.
  143. M. Sliwinska-Bartkowiak, G. Dudziak, R. Sikorski and R. Gras, R. Radhakrishnan and K. E. Gubbins, 2000, “An experimental study of the effect of fluid-wall interaction on the freezing behavior in confined fluids”, Phys. Chem. Chem. Phys., 3, 1179.
  144. M. Sliwinska-Bartkowiak, G. Dudziak, R. Sikorski, R. Gras, R. Radhakrishnan, K. E. Gubbins, 2000, “Melting/freezing behavior of a fluid confined in porous glasses and MCM-41”, J. Chem. Phys., 114 (2) 950. PDF
  145. R. Radhakrishnan, K. E. Gubbins and M. Sliwinska-Bartkowiak, 2000, “Effect of the fluid-wall interaction on freezing of confined fluids: Toward the development of a global phase diagram”, J. Chem. Phys, 112 (24), 11048. PDF
  146. Remarkable melting point behavior in activated carbon fibers, R. Radhakrishnan and K. E. Gubbins, 4 Pages, Proceedings of Carbon 99, Charleston, SC, 1999.
  147. Review Article: L. D. Gelb, K. E. Gubbins, R. Radhakrishnan and M. Sliwinska-Bartkowiak, 1999, “Phase separation in confined systems”, Reports on Progress in Physics, 62 (12), 1573; Erratum: 2000, 63 (4), 727. PDF
  148. A. Watanabe, K. Kaneko, T. Iiyama, R. Radhakrishnan and K. E. Gubbins, 1999, “A remarkable freezing point elevation of CCl4 in graphitic micropores”, J. Phys. Chem. B, 103 (34), 7061. PDF
  149. M. Sliwinska-Bartkowiak, J. Gras, R. Sikorski, R. Radhakrishnan, L. D. Gelb and K. E. Gubbins, 1999, “Phase transition in pores: experimental and simulation studies of melting and freezing”, Langmuir, 15 (18), 6060. PDF
  150. R. Radhakrishnan, K. E. Gubbins, A. Watanabe and K. Kaneko, 1999, “Freezing of simple fluids in microporous activated carbon fibers: A comparative study between simulation and experiment”, J. Chem. Phys, 111 (19), 9058. PDF
  151. R. Radhakrishnan and K. E. Gubbins, 1999, “Free energy studies of freezing in slit pores: an order parameter study using Monte Carlo simulation”, Mol. Phys., 96, 1249. PDF (pre-print)
  152. R. Radhakrishnan and K. E. Gubbins, 1997, “Quasi-one-dimensional phase transitions in nanopores: pore-pore correlation effects”, Phys. Rev. Lett., 78 (15), 2847. PDF

PhD Dissertations and Non-Peer-Reviewed Publications

  1. Jordan, Earl J, "SIMULATION & EXPERIMENT LEARNING FROM KINASES IN CANCER" (2017).
  2. Bradley, Ryan Patrick, "Molecular simulations of protein-induced membrane remodeling" (2016).
  3. Tourdot, Richard W, "Defining the free energy landscape for protein induced cell membrane curvature" (2015).
  4. M. Sliwinska-Bartkowiak, R. Radhakrishnan, and K. E. Gubbins, “Quasi-two-dimensional melting in porous media: effect of multi-layers and cross-over in scaling behavior”, 2008 Condensed Matter Archives, arXiv.org: arXiv:0805.4628v1. PDF (pre-print)

Comments are closed.